Первые, скажем так, «материальные» проекты космических ракет и кораблей появились лишь тогда, когда общий уровень развития науки и техники достиг соответствующего рубежа. А произошло это уже в 1940 годы, с появлением у немцев баллистической ракеты «Фау-2». Приходится признавать, как бы этого ни хотелось, что это «оружие разрушения» стало предтечей всех современных ракет. И рассказывать о «Фау-2» придется подробно. Ее создание началось еще в середине 1930 годов. С самого начала ракета проектировалась с расчетом на ее боевое применение, поэтому все разговоры о космических устремлениях нацистов, которые вели немецкие ученые-ракетчики, не более, чем попытка завуалировать свои истинные цели. Все тактико-технические требования, которые были предъявлены к изделию, однозначно говорят о том, что ни о каком космосе Вернер фон Браун и его соратники и не думали. По крайней мере в тот момент. Все было нацелено на то, чтобы создать эффективную систему вооружений. Работы над ракетой велись достаточно активно. Но началась 2-я мировая война, средств, выделяемых на продолжение работ, стало значительно меньше, и это не позволило специалистам-ракетчикам реализовать свои задумки в короткие сроки. Первые опытные образцы «Фау-2» были изготовлены лишь в 1942 году. Тогда же был завершен этап наземных испытаний двигателей и систем управления ракеты. Летом того же года начались летные испытания.
скрытый текст
Первый блин, как это часто бывает, оказался комом. Состоявшийся 13 июня 1942 года в присутствии министра вооружений Альберта Шпеера и генерального инспектора германских военно-воздушных сил (ВВС) фельдмаршала Эрхарда Мильха экспериментальный запуск закончился преждевременным падением ракеты на землю и ее взрывом. Как удалось выяснить позднее, во время полета отказала система управления, и «Фау-2» упала неподалеку от места старта. Тем не менее Вернер фон Браун был очень доволен результатами. Удалось решить, пожалуй, важнейшую задачу того периода – отрыв ракеты от стартового стола. Неудачей завершился и второй пуск, который состоялся 16 августа того же года. На этот раз в полете у ракеты оторвало носовой конус, и она разрушилась, не выполнив свою задачу. Тем не менее и этот полет фон Браун посчитал удачным – впервые в мире ракете удалось превысить скорость звука. И лишь третий пуск можно считать полностью удачным. Это случилось 3 октября 1942 года. Со страшным грохотом ракета поднялась в воздух. На 21 секунде полета была превышена скорость звука, а еще через 19 секунд в небе появился белый инверсионный след. Через некоторое время он стал зигзагообразным и как будто застыл в голубом небе. Кто-то из зрителей даже придумал для него название – «замороженная молния». Через 58 секунд после старта по команде с земли произошло отключение двигателей, но ракета по инерции продолжала набирать высоту. Она поднялась на 48 километров – рекордную по тем временам высоту. Падение ракеты произошло через 296 секунд после старта на удалении 190 километров. В ходе дальнейших испытательных пусков ракета поднималась все выше и выше, летала все дальше и дальше. В 1944 году началось серийное производство этой ракеты. А 6 сентября 1944 года «Фау-2» «отметилась» первым боевым применением. Две ракеты, правда, неудачно, были запущены по Парижу. Спустя два дня начались регулярные обстрелы Лондона. До 27 марта 1945 года по позициям союзных войск в континентальной части Европы и мирным городам Великобритании было выпущено более 3200 ракет. Планировалось применение «Фау-2» и на Восточном фронте, но стремительное наступление Советской Армии не позволило воплотить эти планы в жизнь. После окончания войны, многое из того, что немцы создавали как «оружие возмездия», попало в руки союзников. Это были и специалисты, и документация, и оборудование, и образцы ракет. В СССР и в США тут же приступили не только к изучению всех этих трофеев, но и к организации широкомасштабных работ по ракетной тематике в целом. Среди «добра», которое удалось захватить у немцев, были и наработки, имеющие непосредственное отношение к пилотируемым полетам в космос. В частности, в руки советских специалистов попали документы с чертежами кабины пилотов на «Фау-2». Это вызвало значительный интерес не только у инженеров, но и у высшего советского руководства. Со слов участников тех событий, первое, что сделал Сергей Павлович Королев, это попытался выяснить у «наших немцев» (немецкие специалисты-ракетчики, оказавшиеся в советской зоне оккупации Германии) подробности этого проекта. Но его ждала неудача – все, кто «оказался» в тот момент под рукой, в один голос уверяли, что слышали об этой разработке, но сами никакого отношения к ней не имели, занимались другими проблемами. Врали они или говорили правду, никто выяснять не стал. На нет – и суда нет. Так как перед Королевым тогда стояли задачи и поважнее, он не стал дальше интересоваться этой модификацией «Фау-2», а переключился на создание боевых ракет, превосходящих по своим характеристикам немецкую ракету. Это совсем не означает, что Сергею Павловичу данная тематика была неинтересна. Просто, как здравомыслящий человек, он понимал, что всему свое время, а пилотируемая космонавтика – это дело будущего, пусть и не такого уж, как оказалось, отдаленного. А раз так, то пусть и подождет. Иначе к информации о кабине пилота на «Фау-2» отнесся Михаил Клавдиевич Тихонравов – один из создателей первых советских ракет на жидком топливе, взлетавших в небо еще в 1930 годах. Он посчитал, что при некотором желании есть возможность в течение ближайших двух-трех лет поднять человека в стратосферу. Так появился проект ракеты ВР-190, предполагавший полет двух космонавтов (тогда еще не было термина «космонавт», поэтому Тихонравов употреблял термины «астронавт» и «стратонавт») на высоту 190 километров. Отсюда и появился числовой индекс «изделия». Корни этого проекта следует искать не в немецких разработках. Это было бы слишком просто, да и неправильно. Работы фон Брауна и его команды стали лишь катализатором тех идей, которые Тихонравов высказывал еще в довоенные годы. Впервые достаточно четко он сформулировал свои взгляды на пилотируемую космонавтику в 1935 году в докладе, сделанном на Всесоюзной конференции по применению летательных аппаратов для освоения стратосферы: «Исследование стратосферы не является конечной целью развития ракетной техники. Это – только технически подготовиться для того, чтобы человеку сначала подняться в верхние слои атмосферы, затем выйти из нее…» (цитирую по публикации в журнале «Новости космонавтики», № 9, 2001 г.). В том же году он опубликовал статью «На ракете в стратосферу», в которой отмечал, что думать «о подъеме человека на большую высоту можно и должно… Полет человека на ракете вполне возможен». В конце 1930 годов Тихонравов не только теоретизировал о полете в космос, но и пытался сконструировать ракету, способную это сделать. Но работы в этом направлении были остановлены начавшейся Великой Отечественной войной. Конечно, трудно предположить, что тогда такой проект мог бы состояться: советское двигателестроение вряд ли смогло бы оснастить ракету двигателем достаточной тяги. Но пути работы были достаточно четко определены, и когда в Советском Союзе узнали о немецких идеях, пусть и не воплощенных в жизнь, Тихонравов и предложил свой проект. Тем более что появился и ракетный двигатель, способный поднять человека на такую высоту. В чертежах ВР-190 появилась еще в 1945 году, когда до первых пробных пусков в нашей стране «Фау-2» оставалось два года. Часто этот проект называют «проект Тихонравова-Чернышева» по именам его разработчиков – Михаила Клавдиевича Тихонравова и Николая Гавриловича Чернышева. Иногда ракету именуют «Победой». Якобы это наименование было «в верхах» зарезервировано для первого советского пилотируемого космического аппарата. Академия наук СССР одобрила сделанное предложение и рекомендовала Министерству авиационной промышленности рассмотреть возможность его практической реализации. Однако авиаторы не слишком торопились следовать этим рекомендациям, и пришлось Тихонравову и Чернышеву обращаться с личным письмом к Сталину. Тот дал соответствующее указание министру авиационной промышленности. Но это совсем не означает, что Сталин поддержал проводимые работы. Как политика, его интересовали больше всего дивиденды, которые можно было получить от того или иного решения. А в предлагаемом проекте не все было однозначно. С одной стороны, полет человека в стратосферу, если бы он оказался удачным, мог бы существенно повысить престиж СССР на международной арене. Но, с другой стороны, мог бы и привести к нежелательным последствиям в случае неудачи. Поэтому Сталин и не спешил делать резких шагов, а поручил во всем разобраться специалистам. Михаил Васильевич Хруничев, являвшийся в то время министром авиационной промышленности СССР, не первый год работал в высших эшелонах власти и прекрасно знал характер «вождя». Поэтому в направленной 20 июля 1946 года на имя Сталина докладной записке «О рассмотрении предложения Тихонравова и Чернышева о создании ракеты для полета человека на высоту 100–150 километров» он постарался и одобрить предложение Тихомирова и Чернышева, и привести такие аргументы, которые не позволили бы развернуть работы широким фронтом. Это довольно любопытный документ, который частично был опубликован в 2003 году на страницах журнала «Новости космонавтики». Так как эта записка фактически объясняет, почему ВР-190 так и не была создана, позволю себе процитировать отдельные ее фрагменты. Положительно оценив саму идею, Хруничев вслед за этим писал: «Если же представляется возможным, то целесообразно изучить все работы по исследованию испытаний «Фау-2», проводимых в Германии, и первую стадию работ по созданию самой ракеты, а также первоначальные ее испытания на стендах и в полете (без пилота, только с приборами) провести в Германии так как там существуют условия для успешного проведения этой части работ. Поставку 10–15 корпусов ракеты «Фау-2» со всеми изменениями по чертежам конструкторского бюро тов. Тихонравова, а также проектирование и изготовление стартовых стендов для испытания и пуска ракет следует возложить на Министерство вооружения, как на головное министерство по производству ракет «Фау-2». Проектирование и изготовление необходимой измерительной аппаратуры по заказу конструкторского бюро следует возложить на ряд других министерств. Одновременно докладываю, что в письме, адресованном на Ваше имя товарищами Тихонравовым и Чернышевым, называется срок строительства высотной ракеты близкий к году, после же рассмотрения всех материалов авторы называют уже срок два года. Следует отметить, что срок два года является минимальным и весьма напряженным. Группа инженеров, возглавляемая тов. Тихонравовым, по своему инженерному опыту в этой области не является достаточно сведущей, за исключением тов. Тихонравова, который в области ракетной техники имеет опыт и навык. В связи с этим, если будет предрешен вопрос об организации бюро, эту группу придется усиливать за счет более опытных специалистов. При наличии Вашего согласия организовать работу по созданию высотных ракет и конструкторское бюро для этих целей на заводе Министерства авиапромышленности, прошу утвердить прилагаемый проект постановления Совета Министров Союза ССР». Как известно теперь, приложенный к докладной записке проект постановления Совета министров так и остался проектом. Да и необходимости в нем к тому моменту уже не было, так как 13 мая 1946 года Сталин подписал другое постановление – № 1017-419сс, которым определялись основные направления работ в нашей стране по вопросам создания ракетной техники. Что-то менять в угоду «сомнительного» проекта никто не захотел. Но проект не похоронили, предоставив его авторам возможность продолжить свою деятельность в ракетном НИИ-4, куда была переведена группа Тихонравова-Чернышева. На первых порах они работали над проектом по его целевому назначению – вертикальный ракетный полет двух пилотов с изучением кратковременного воздействия на человеческий организм невесомости, проверкой бортовых систем и исследованиями верхних слоев атмосферы. Однако довольно скоро стало ясно, что ВР-190 не вписывается в тематику работы института и следовало предпринимать какие-то меры, чтобы работы, пусть в урезанном виде, но могли бы продолжаться. Так в плане НИИ-4 появилась строка о создании «Ракетного зонда», задачами которого стали исследование возможностей спасения на парашюте отработавших ступеней и головных частей ракет в процессе проведения испытаний (в том числе и зенитных ракет), сброса на парашютах техники и вооружения с самолетов в интересах парашютно-десантных войск (военно-воздушные войска появятся позднее), спасения контейнеров с животными, к пускам которых уже готовились. Весьма резко о проекте ВР-190 высказывался и Королев, возглавивший к тому времени коллектив, которому предстояло заниматься работой по созданию в нашей стране баллистических ракет. Сначала это был отдел в составе НИИ-88, затем конструкторское бюро в том же институте, и, наконец, самостоятельное ОКБ-1. Сейчас трудно сказать, почему Сергей Павлович не поддержал Тихонравова, с которым начинал работать еще в 1930 годах. Вполне возможно, что эта была обыкновенная ревность. Не исключено, что Королев уже «застолбил» на будущее этот участок работы для себя и не намерен был отдавать приоритет в чужие руки. Даже если это были руки друга и соратника. А, может быть, в тот период времени Королев искренне считал, что такой вариант достижения космоса – прыжок на ракете – не нужен. Кстати, после трансформации ВР-190 в «Ракетный зонд» Сергей Павлович дал положительное заключение на проект и предложил подключить к нему многих видных ученых. Казалось бы, теперь только работать и работать, но к тому времени Тихонравов и Чернышев, авторы первоначального проекта, потеряли к нему всякий интерес. Михаил Клавдиевич занялся составными ракетами, а Николай Гаврилович – топливами для жидкостных ракетных двигателей. У американцев, насколько известно, в те годы подобных проектов не было. Были лишь предложения общего характера, которые от «вынужденного безделья» плодил Вернер фон Браун (в первые годы нахождения в США немца к работам по ракетной тематике не допускали, предварительно получив от него всю требуемую информацию). Так родились, а впоследствии были широко разрекламированы проект огромной орбитальной станции на околоземной орбите, программа экспедиции на Марс, проект лунной базы и так далее. Я не буду описывать здесь эти проекты подробно, но скажу, что выглядели они масштабно и красиво. Правда, без всякой надежды на реализацию в первую очередь именно из-за своей масштабности и красивости.
16 мая 1936 | Родился Куликов Станислав Данилович. Ген. конструктор и ген. директор НПО им. С.А. Лавочкина (1996-2003). Д.т.н. Профессор. Лауреат Гос.премии. Действ. член РАКЦ.
16 мая 1936 | Родился Куликов Станислав Данилович (16.05.1936г. – 26.11.2005). 1996 -1997 – генеральный конструктор НПО им. С.А. Лавочкина. 1997 – 2003 - генеральный конструктор и генеральный директор НПО им. С.А. Лавочкина. Д.т.н., профессор, лауреат Гос. премии, член РАКЦ.
16 мая 1946 | Организован Государственный союзный головной институт № 88 по ракетной технике (НИИ-88) в соответствии с приказом Министра вооружения СССР Д.Ф. Устинова.
16 мая 1952 | М.К. Янгель назначен директором НИИ-88.
16 мая 1969 | Спускаемый КА «Венера» совершил плавный спуск в атмосфере Венеры, обеспечив большой объем информации, включая уточненные данные об атмосфере планеты.
16 мая 2000 | Первый пуск конверсионной РН космического назначения «Рокот» с СК, разработанного КБТМ
6 мая исполняется 95 лет (1922) со дня рождения американского летчика-испытателя, одного из пилотов ракетного самолета Х-15 Форреста Сайлса Петерсена (Forrest Silas Petersen).
16 мая исполняется 50 лет (1967) со дня запуска в СССР (космодром Байконур) автоматической лунной станции Е-6ЛС №111. Аппарат для тестирования средств командно-измерительного комплекса обеспечения лунной экспедиции преднамеренно выведен на орбиту спутника Земли с апогеем 60600 км и получил название "Космос-159".
Ни один из описанных в предыдущих главах проектов: ни «фантастические» проекты XIX века, ни «наивные» начала XX века, ни «масштабные» фонбрауновские, – никогда так и не были реализованы. Причин тому множество: и технического, и экономического, и политического характера. Но самое главное – человек тогда еще не был морально готов вырваться на бескрайние просторы космоса. Хотя и подошел к этой идее вплотную. Моральное «дозревание» человечества произошло где-то в середине 1950 годов, когда стало ясно, что разрабатываемая в тот момент ракетная техника уже в ближайшие годы позволит доставить человека в космос. Тогда-то и начались первые проработки этого вопроса. Сначала на теоретическом уровне (ну что тут поделаешь, если за сотни предыдущих лет человечество уже привыкло теоретизировать на эту тему), а потом и в практическом аспекте. В те годы лишь две державы имели возможности заниматься созданием пилотируемых космических систем – СССР и США. Поэтому и неудивительно, что первые разработки, имевшие реальные шансы на успех, появились у нас и американцев. Эти две страны и стали основными конкурентами в области пилотируемой космонавтики. Надо отметить, что борьба между сверхдержавами за первого человека в космосе началась еще до того, как завершилось соревнование за первый спутник.
скрытый текст
Так как до самого последнего момента, до запуска 12 апреля 1961 года корабля «Восток», не было никакой ясности с будущим победителем этой гонки, дальнейшее повествование я буду вести, рассказывая о событиях по обе стороны Атлантического океана. Такое сравнение позволит понять и осознать, почему в этом соревновании победил Советский Союз, а не Соединенные Штаты, которые были далеко впереди нас в экономическом и техническом плане, но оказались в итоге позади нас. В нашей стране разработка космического аппарата (термин «космический корабль» появился позднее), предназначенного для полета человека в космос, началась в 9 отделе ОКБ-1 в начале 1957 года. То есть еще до запуска первого спутника. Работы по проектированию пилотируемых кораблей Королев поручил одному из авторов проекта ракеты ВР-190, о которой я рассказывал в предыдущей главе, Михаилу Тихонравову, перешедшему из НИИ-4 в ОКБ-1. Так как задача полета человека в космос виделась относительно далекой перспективой – на первом плане тогда стояло создание межконтинентальной баллистической ракеты – то и сил на эту работу было выделено совсем немного. Это было даже не эскизное проектирование, а просто наброски различных вариантов космических аппаратов, которые когда-нибудь будут «бороздить просторы Вселенной». В тот момент конструкторы не были связаны жесткими массогабаритными ограничениями, поэтому могли немного «пофантазировать». Но в разумных пределах, так как прекрасно знали «предельные» возможности тех ракет, которые должны были появиться в ближайшие годы и которые должны были стать носителями этих аппаратов. Сразу скажу, что от рассмотрения варианта совершения суборбитального полета отказались сразу. У Королева «прыжок человека в космос» всегда вызывал отторжение. Он не считал его полноценным космическим полетом. Поэтому и рассматривать такой полет, неважно, как промежуточный шаг или как возможность «застолбить» первенство, он не собирался. Побеждать, так «с явным преимуществом». Именно на это Королев и нацеливал своих сотрудников. А среди вариантов, которые тогда были рассмотрены, можно отметить два. Первый представлял собой спутник с человеком на борту, оснащенный системами жизнеобеспечения, управления, навигации, связи, двигательной установкой для маневрирования в космосе и научными приборами. Второй вариант был намного «сложнее». В космос предполагалось вывести аппарат, напоминающий обыкновенный самолет и своим внешним видом, и компоновкой бортовых систем. С точки зрения конструкторов, он больше подходил для возвращения с орбиты, так как позволял использовать земную атмосферу для торможения и маневрирования. Да и посадку мог осуществить практически на любой аэродром. И управлять им мог, в идеале, конечно, любой квалифицированный летчик. Рассматривалось и множество других «промежуточных» вариантов. Например, различные формы возвращаемого аппарата. Про различия в компоновке бортового оборудования можно и не говорить. Это было само собой разумеющимся. Во всех вариантах: и «основных», и «промежуточных» – масса космических аппаратов составляла от четырех до пяти тонн. Однако если в варианте спутника возвращаемая масса составляла около полутора тонн, то в варианте «самолетика» она достигала четырех тонн. Сроки осуществления всех этих проектов назывались около двух лет – чуть меньше для спутника, чуть больше для крылатой конструкции. Причем за начальную точку отсчета бралось начало полномасштабных работ над кораблем. При этом считалось, что ракета, способная доставить пилотируемый аппарат в космос, уже есть. Хотя на деле ее еще не было. Дальше «просмотра» различных вариантов будущих пилотируемых космических аппаратов в ОКБ-1 тогда дело не пошло, лишний раз подтверждая, что «всему свое время». Хотя и было ясно, что это время наступит очень и очень скоро. И оно наступило. И наступило гораздо быстрее, чем это виделось в самом начале работ. Уже 15 февраля 1958 года (к тому времени уже были запущены два первых искусственных спутника Земли) Королев поставил перед своими сотрудниками конкретную задачу: разработка пилотируемого орбитального корабля. Главным проектантом был назначен Константин Петрович Феоктистов, ставший впоследствии летчиком-космонавтом. Тут необходимо отметить, что работа над пилотируемым кораблем для ОКБ-1 была не главной. В тот момент важнее было «удовлетворить» военных, стремившихся получить в свое распоряжение спутник-фоторазведчик. И именно на эту работу, а не на амбициозные проекты «мирного» характера, они выделяли деньги. Поэтому Королев и поставил перед своими сотрудниками задачу максимальной унификации этих двух аппаратов: будущего пилотируемого корабля и будущего разведывательного спутника. Летом 1958 года предварительные работы по кораблю были закончены и утверждены Главным конструктором. Королев тут же направил свои предложения по созданию пилотируемого корабля и беспилотного спутника-разведчика в правительство. Не дожидаясь официального одобрения проекта, в ОКБ-1 сразу же начали разработку конструкторской документации и выдали технические задания в смежные организации. С этого момента оба аппарата стали проходить под одним названием, но с разными цифровыми обозначениями: фоторазведчик назывался «Восток-2» (объект 2К), а пилотируемый корабль – «Восток-3» (заводской индекс 3К). Тем самым демонстрировалось, что военные задачи в те годы стояли на первом месте. Ну а полет в космос человека – это так, «от нечего делать». Правда, после полета Юрия Гагарина фоторазведчик получил другое наименование «Зенит-2», под которым и вошел в историю. А название «Восток-1» было дано упрощенному космическому аппарату, предназначавшемуся для отработки систем. Различие в целевом назначении пилотируемого корабля и беспилотного спутника предопределило и их отличия. Внешне они были похожи, если не как близнецы, то как родные братья. Но внутреннее устройство, естественно, было для каждого свое. О разведывательном «Востоке» я не буду ничего говорить, при рассказе о подготовке полета человека в космос это не самое интересное. А вот его пилотируемого собрата опишу подробнее. Корабль «Восток-3» должен был состоять из двух отсеков: спускаемого аппарата и приборного отсека с тормозной двигательной установкой. Герметичный спускаемый аппарат, который одновременно был и кабиной пилота, имел почти сферическую форму. Снаружи он покрывался теплоизоляцией из асбестовой ткани, пропитанной бакелитовой смолой. Масса спускаемого аппарата составляла 2,4 тонны. В спускаемом аппарате были установлены бортовые системы, которые требовались при совершении пилотируемого полета: система жизнеобеспечения, системы ориентации, связи и так далее. Космонавт в течение всего полета должен был находиться в скафандре СК-1, подключенном к бортовой системе жизнеобеспечения. При внезапной разгерметизации корабля скафандр поддерживал жизнедеятельность космонавта в течение четырех часов. Также он позволял катапультироваться из кабины на высоте 10 километров. Приборный отсек массой 2,3 тонны представлял собой два соединенных основаниями усеченных конуса. В нем размещалась аппаратура, обеспечивающая функционирование бортовых систем во время орбитального полета. На приборном отсеке устанавливались тормозные двигатели, обеспечивавшие сход корабля с орбиты и его последующий вход в атмосферу. Тормозная установка была в одном экземпляре, без дублирования. Если бы она отказала, то корабль мог вернуться на Землю за счет естественного торможения об атмосферу. Для этого корабль выводился на низкую орбиту, чтобы возвращение могло произойти еще до того, как будут исчерпаны ресурсы системы жизнеобеспечения. Технологический корабль «Восток-1», предтеча пилотируемого аппарата, отличался от «Востока-3» тем, что на его борту шла параллельная отработка и систем пилотируемого корабля, и фоторазведывательного оборудования. На первых экземплярах ряд систем либо вообще не устанавливался, либо устанавливался в упрощенном варианте. Эскизный проект корабля «Восток-1» был утвержден 26 апреля 1960 года. Но одновременно, что было характерно для того времени, шло и его производство. Упрощенный вариант уже существовал в «железе» и был практически готов к летно-конструкторским испытаниям. Вскоре они начались. Но об этом немного позже, в одной из последующих глав, а пока посмотрим, как шли дела у наших конкурентов, у американцев. Они жаждали «рассчитаться» с нами за первый спутник, и первый полет человека в космос как нельзя более подходил для этого. В США первая реальная программа (я подчеркиваю, реальная, а не гипотетическая) осуществления пилотируемого полета – «Проект «Адам» – была сформулирована Вернером фон Брауном осенью 1957 года. Она представляла собой двухлетний план работ по подготовке суборбитального полета человека, который должен был состояться до конца 1960 года. В качестве носителя предполагалось использовать модернизированную баллистическую ракету «Редстоун». В головной части ракеты предлагалось разместить герметичную гондолу от стратостатов, которые использовались военно-воздушными силами для высотных исследований. Согласно расчетам фон Брауна, «Редстоун» должна была вывести капсулу с человеком на высоту около 240 километров. После этого происходило разделение космического аппарата и носителя, и кабина не менее 8 минут должна была двигаться к Земле по баллистической траектории. На высоте чуть больше 10 километров в действие должна была вступить парашютная система, которая обеспечивала бы приводнение капсулы с человеком на борту. В ходе такого суборбитального полета планировалось изучить жизнедеятельность человеческого организма в условиях невесомости и при перегрузках, проверить работоспособность систем управления и связи, выработать критерии конструирования обитаемых аппаратов для будущих космических полетов. Кроме того, как отмечал фон Браун в своей докладной записке, запуски по проекту «Адам» позволят утвердить факт технического превосходства США в глазах мировой общественности. На подготовку и осуществление первого суборбитального запуска Управление баллистических ракет Армии США просило выделить 11,5 миллионов долларов. Смехотворная сумма по сравнению с теми затратами, которые в настоящее время требуются создателям космической техники. Но и этих мизерных денег в 1957 году американские конгрессмены не дали, посчитав предложение фон Брауна «пустой и ненужной затеей». История проекта «Адам» оказалась очень короткой. Летом 1958 года проект был рассмотрен правительственными чиновниками, которые его отклонили. Основным аргументом при этом стал факт учреждения нового агентства – Национального управления по аэронавтике и исследованию космического пространства (НАСА), которому предстояло сосредоточить в своих руках все космические программы. В том числе и программу пилотируемых полетов. Проект «Адам» был не единственным вариантом осуществления пилотируемого полета, который появился на свет после начала гонки за лидерство в космосе. Помимо фон Брауна, со своими предложениями об отправке человека в космос выступили и американский флот, и ВВС США. Проект последних – «Человек в космосе за кратчайший срок» (Man in Space Soonest) или проект 7969 – был наиболее продуманным. И с организационной, и с технической точек зрения. Первые работы по проекту 7969 начались в марте 1958 года, когда на большой конференции, организованной Штабом ВВС в центральном офисе Управления баллистических систем в Лос-Анжелесе, были сформулированы основные характеристики будущей пилотируемой системы. Тогда же была определена этапность освоения космоса человеком. Программа «Человек в космосе за кратчайший срок» была лишь первой фазой многолетних исследований. За ней должны были последовать следующие этапы: «Человек в космосе, продолжение» (Man in Space Sophisticated), «Исследование Луны» (Lunar Reconnaissance) и, наконец, «Высадка на Луну и возвращение» (Manned Lunar Landing and Return). Если взглянуть на эту грандиозную программу из сегодняшнего дня, то можно легко увидеть, что все ее основные положения были выполнены. Не в те сроки, как это виделось в 1958 году. Но американцам все это удалось. Когда стало ясно с основным направлением работ, ВВС США объявили конкурс по созданию обитаемой капсулы для высотных исследований. Так как предполагалось проводить запуски с помощью ракеты «Атлас» с дополнительной ступенью, то основным требованием к этой разработке стало ограничение, чтобы будущий аппарат выдерживал перегрузки до 12 единиц, возникающие на участке запуска. В рамках объявленного ВВС США конкурса было получено 11 технических предложений. Одной из первых свой вариант пилотируемого корабля предложила компания «Локхид». Их обитаемая капсула представляла собой конус с диаметром в основании 2,7 метра, длиной 4,3 метра и массой 1400 килограммов. Согласно расчетам, ракета-носитель должна была выводить капсулу на высоту в 480 километров. Сам орбитальный полет должен был продолжаться не более 5 часов. На реализацию своего предложения «Локхид» запросил 100 миллионов долларов. При этом первый полет человека в космос должен был состояться через два года после начала финансирования. Другое предложение поступило от компании «Мартин», которая предложила свой вариант обитаемой капсулы, а также предложила использовать в качестве носителя не «Атлас», а межконтинентальную баллистическую ракету «Титан». Это позволяло увеличить продолжительность полета до 24 часов. Правда, высота орбиты при этом несколько уменьшалась – до 240 километров. Капсула от «Мартина» должна была иметь диаметр в основании 2,4 метра, длину – 4,3 метра, массу – 1600 килограммов. В отличие от корабля «Локхид», которым необходимо было управлять вручную, капсула «Мартин» должна была быть снабжена автоматической системой управления. Первый полет по варианту «Мартин» должен был состояться через 30 месяцев после утверждения проекта. Схожую схему реализации задания ВВС предложила и компания «Аэронетроникс». В их варианте обитаемая капсула должна была иметь конусообразную форму с диаметром 2,1 метра в основании. Полный вес аппарата должен был составить 1150 килограммов. Пилот должен был находиться внутри герметичной сферы, «подвешенной» внутри капсулы. Сфера должна была вращаться, чтобы человеческое тело всегда было расположено вдоль продольной оси корабля. В случае отказа ракеты-носителя до выхода корабля на орбиту капсула с астронавтом могла быть отстрелена. Специалисты компании «Аэронетроникс» были очень сдержаны в своих оценках первого полета, поэтому отводили на всю разработку шесть лет. Предложение компании «Гудиер» немного отличалось от описанных выше проектов. Их обитаемая капсула должна была иметь вид сферы диаметром 2,1 метра и массой 900 килограммов. Капсулу предполагалось снабдить задним хвостовым обтекателем. На реализацию проекта «Гудиер» запросила 100 миллионов долларов и два года. Совсем простой вариант предложила компания «Конвайр». Их шарообразная капсула диаметром 1,6 метра и массой 450 килограммов должна была выводиться на орбиту высотой 270 километров. После выполнения задачи капсула должна была сводиться с орбиты под воздействием тормозного двигателя. Конструкторы «Конвайра» были убеждены, что за счет простоты конструкции аппарата их проект можно будет реализовать в течение года. Весьма необычную космическую систему предложила использовать компания «Авко». Их проект предусматривал создание шарообразного орбитального корабля диаметром 2,1 метра и массой 680 килограммов. Вместо тормозного двигателя аппарат планировалось снабдить уникальным парашютом из тончайших листов нержавеющей стали. Маневрирование на орбите и сход с нее должен был осуществляться при помощи пневматических микродвигателей, работающих на сжатом воздухе. При нормальном ходе полета капсула с астронавтом должна была приземлиться на территории штата Канзас, на выделенной территории размером 650 на 300 километров. Компания «Макдоннелл» предложила использовать в рамках проекта 7969 капсулу диаметром 2,1 метра и весом 1090 килограммов. По внешнему виду она напоминает ту, которая использовалась и используется сегодня в российских космических кораблях типа «Союз». Запустить ее планировалось с помощью ракеты «Атлас», но с дополнительной ступенью, созданной на базе ракеты морского базирования «Поларис». Это позволило бы доставить аппарат на высоту 180 километров. Но время пребывания астронавта в космосе при этом составило бы всего 90 минут. Маневрирование на высоте должно было осуществляться пилотом вручную. «Макдоннелл» бралась реализовать проект за два года. В ряде предложений, вместо схемы баллистического запуска, рассматривались варианты использования «орбитального самолета». Так, компания «Норт Америкен» предложила в качестве пилотируемого спутника Земли свой ракетоплан Х-15. Нечто похожее на Х-15 предложила и компания «Нортроп». От варианта «Норт Америкен» этот ракетоплан отличался лишь линейными размерами. Свой вариант «орбитального самолета» предложили специалисты компании «Белл». Но проект был сформулирован в самом общем виде, так как инженеры «Белл» рассчитывали лишь пробудить интерес к этой проблеме со стороны американских военных. По их расчетам, создать первый настоящий орбитальный самолет можно было бы за пять лет при финансировании в 889 миллионов долларов. Впоследствии прикидки специалистов «Белла» легли в основу программы создания ракетоплана «Дайна-Сор». Наиболее оригинальное предложение по «орбитальным самолетам» поступило от компании «Рипаблик». Их ракетоплан носил имя «Ферри след» по имени главного конструктора Антонио Ферри. Он представлял собой треугольный в плане аппарат массой 1800 килограммов. По его периметру крепилась труба диаметром 60 сантиметров, служившая одновременно обтекателем и топливным баком для жидкостного ракетного двигателя. Кроме основного двигателя на «Ферри» должны были устанавливаться две твердотопливные ракеты. Пилот находился в маленьком отсеке ближе к носу аппарата. Полет продолжительностью 10 суток завершался сходом с орбиты и планированием в атмосфере с постепенным снижением скорости. Когда скорость «Ферри» становилась ниже скорости звука, пилот должен был катапультироваться и приземлиться на парашюте. Инженеры компании «Рипаблик» полагали, что смогут запустить свой аппарат с пилотом на борту через 21 месяц после начала работ. Пока специалисты ВВС занимались изучением полученных предложений, на «космической арене» появилось специализированное агентство – Национальное управление США по аэронавтике и космическим исследованиям (НАСА), которому и было поручено заняться реализацией программы подготовки первого полета человека в космос, получившей впоследствии название «Меркурий». Свои требования к космического аппарату, предназначенному для полета человека в космос, НАСА сформулировало 17 ноября 1958 года. Одним из немаловажных условий при этом была возможность использовать капсулу и при суборбитальных полетах, и в орбитальном полете. Американцы упорно шли по пути, когда проникновение в космос было двухступенчатым. То есть шли тем маршрутом, от которого отказались Королев и его соратники. В ходе объявленного конкурса наибольшую поддержку получило предложение компании «Макдонелл». С ней и был подписан контракт на разработку и изготовление 12 летных экземпляров. Основатель фирмы Джеймс Макдонелл лично курировал разработку. Для его специалистов проводимая работа была естественным продолжением работ над реактивными истребителями. Поэтому уже 25 января 1960 года первый летный экземпляр корабля был сдан заказчику. По большому счету «Меркурий» не был космическим кораблем. Впрочем, и «Восток» нельзя считать таковым. Ни один из них не мог маневрировать на орбите. И тот и другой были всего-навсего капсулами. Одна попроще, другая посложнее. Американский корабль (все-таки я буду называть и «Меркурий», и «Восток» кораблями, чтобы самому не запутаться, да читателей не запутать) предназначался для того, чтобы в течение короткого времени (от десятков минут до полутора суток) обеспечить пребывание человека в условиях космического пространства. По форме она напоминала усеченный конус. Максимальный диаметр капсулы составлял 1,89 метра, высота – 2,92 метра (вместе с тормозной двигательной установкой и системой аварийного спасения – 7,91 метра). Масса капсулы – около 1,3 тонны. Основание конуса закрывал теплозащитный экран: при баллистических полетах – бериллиевый, работающий на излучение, при орбитальных – абляционный, из стекловолокна и резины. Оболочка капсулы имела внутреннюю герметичную и внешнюю теплозащитную обшивки, соединенные болтами. Сложный «пирог» оболочки мог «дышать» – сохранял форму и герметичность при нагреве и охлаждении. По просьбе астронавтов, начиная со второго летного эземпляра в стенку кабины был вделан иллюминатор, позволявший видеть горизонт позади корабля во время орбитального полета. Бортовое оборудование капсулы включало в себя систему жизнеобеспечения, систему стабилизации и ориентации, систему связи и тому подобное. При выходе на орбиту капсула отсоединялась от носителя путем высвобождения зажимного кольца крепления и включения трех специальных твердотопливных двигателей. Спуск на Землю происходил следующим образом. Торможение обеспечивал блок тормозных двигателей, закрепленных в центре лобового теплозащитного экрана. Двигатели включались с пятисекундным интервалом и работали по 10 секунд каждый. Далее двигательная установка сбрасывалась и капсула устремлялась к Земле. После торможения в атмосфере, раскрывался тормозной парашют, а на высоте 3 километра – основной. После раскрытия парашюта теплозащитный экран отделялся и надувался посадочный амортизатор из прорезиненной ткани. Сажать «Меркурии» предполагалось на воду. И в заключении главы небольшая ремарка. Читатели, вероятно, заметили, что рассказ об американских разработках, особенно на этапе просмотра вариантов, получился более объемным, чем рассказ о работе советских специалистов. Не думайте, что этим я хочу поразить ваше воображение и что-то сказать в пользу американцев. Нет. Просто об отечественных пилотируемых вариантах известно гораздо меньше. И это огорчает. Хотелось бы знать детально, как эволюционировала советская инженерная мысль, как рождались черты того корабля, который теперь известен всему миру под наименованием «Восток». С исторической точки зрения это было бы интересно и поучительно. На наше счастье Королев сумел увидеть среди представленных ему вариантов подготовки и осуществления полета человека в космос тот единственно верный, единственно «выигрышный», который и привел нас к победе на очередном этапе космического соревнования. Ошибись он тогда в приоритетах, и все могло бы сложиться иначе.
17 мая 1969 | Завершила полет по трассе Земля-Венера АМС «Венера-6». Разрушилась в атмосфере Венеры на высоте 18 км. Передала данные о содержании углекислого газа (93-97 %), азота (2-5 %), кислорода (менее 4 %).
17 мая 1982 | С борта ДОС «Салют-7» запущен малый студенческий ИСЗ «Искра-2» - первый спутник, запущенный с борта пилотируемой станции.
17 мая 1995 | По приказу Министерства РФ по налогам и сборам образована Государственная налоговая инспекция по городу и космодрому Байконур.
17 мая исполняется 50 лет (1967) со дня рождения американского астронавта Джозефа Майкла Акабы (Joseph Michael Acaba).
17 мая исполняется 50 лет (1967) со дня запуска в СССР (космодром Байконур) орбитальной головной части, официально объявленной как спутник “Космос-160”.
17 мая исполняется 45 лет (1972) со дня запуска в СССР (космодром Плесецк) разведывательного спутника “Космос-490” (“Зенит-2М”).
17 мая исполняется 40 лет (1977) со дня запуска в СССР (космодром Байконур) разведывательного спутника “Космос-908” (“Зенит-4МК”).
17 мая исполняется 35 лет (1982) со дня запуска в СССР (космодром Байконур) военного спутника-ретранслятора “Космос-1366” (“Поток” №11Л).
17 мая исполняется 5 лет (2012) со дня запуска в России (космодром Плесецк) разведывательного спутника “Космос-2480” (“Кобальт-М”).
17 мая исполняется 5 лет (2012) со дня запуска в Японии (космодром Танэгасима) японского спутника исследования Земли GCOM-W1 (Shizuku), южнокорейского спутника ДЗЗ Arirang-3 и японских экспериментальных спутников SDS-4 и Horyu-2.
17 мая исполняется 5 лет (2012) со дня запуска с космодрома Байконур с помощью российской ракеты-носителя “Протон-М” канадского телекоммуникационного спутника Nimiq-6.
Прежде чем перейти к рассказу о летно-конструкторских испытаниях «Востоков» и «Меркуриев» (напомню, что речь будет одновременно идти и о советских, и об американских работах), хочу немного коснуться вопроса о ракетах, которым предстояло выводить корабли в космос. В нашей стране единственным носителем, который мог стать (и стал им впоследствии) средством отправки человека в космос, была межконтинентальная баллистическая ракета Р-7. Другие ракеты со сравнимой грузоподъемностью были еще только в перспективе, а человека в космос надо было отправлять как можно скорее. Да и создана «семерка» была Королевым, который возглавлял работы по кораблю. Проще говоря, «иного выбора у него не было». Основой для начала работ по созданию Р-7 (заводской индекс 8К71) стало постановление ЦК КПСС и Совета Министров СССР, принятое 20 мая 1954 года. В те годы перед нашей страной стояла, как это не высокопарно звучит, задача огромной важности – создание носителя ядерного оружия, способного поразить цели на территории неуязвимой на тот момент Америки. Одним из возможных вариантов, а их было несколько, была «Семерка».
скрытый текст
За неполных три года удалось разработать не только саму ракету, но и создать необходимую производственную и испытательную базу, построить наземные сооружения, требуемые для обеспечения ее пусков. Именно в тот период родился знаменитый Байконур, правда, о его существовании мы узнали спустя много лет. Именно тогда были образованы предприятия, ставшие впоследствии гордостью отечественной космонавтики. Именно тогда… Впрочем, я прерву это долгое перечисление. Сегодня рассказ не только и не столько о «семерке», сколько о том, как человек отправился в космос. И в этом контексте Р-7 лишь один из этапов этого пути. Хотя и чрезвычайно значимый этап. Итак, к началу 1957 года работы по ракете вступили в завершающую стадию. Теперь лишь реальный полет мог доказать (или опровергнуть) все то, что было придумано, сконструировано, воплощено в металле. К летным испытаниям готовились долго и тщательно. Предстоящие пуски должны были стать своеобразным экзаменом не только для Р-7 и ее создателей, но и для всей страны. Окажись они удачными, и Советский Союз становился одним из ведущих «игроков» на мировой политической арене, а провал испытаний ставил под сомнение право нашей страны на существование. Но это довольно схематичная трактовка тех изменений, которые могли произойти. Теперь мы знаем, что реальность превзошла все, даже самые смелые, предположения. Первый, летный экземпляр, «Семерки» прибыл на Байконур в апреле 1957 года. Почти месяц ушел на то, чтобы устранить те замечания, которые были выявлены при проверках отдельных узлов и агрегатов. И вот 15 мая в 19 часов 1 минуту по московскому времени ракета оторвалась от Земли и, быстро уменьшаясь в размерах, взмыла ввысь. Все причастные к пуску очень надеялись на успех, на то, что ракета полетит с первой попытки. Но, чаще всего, первый блин оказывается комом. Так получилось и в тот раз. Следившие за полетом ракеты, увидели, как сначала перекосилась струя огня, вырывавшаяся из сопел ракетных двигателей, а потом, неожиданно, все погасло. Чуть позже стало известно, что телеметрия зафиксировала прохождение команды аварийного выключения двигателей где-то около сотой секунды полета. Дальнейший анализ данных показал, что причиной аварии стал пожар в хвостовой части блока «Д», начавшийся еще до отрыва ракеты от стартового стола и нарушивший герметичность в магистрали подачи керосина в двигатель. Тем не менее управляемый полет продолжался до 98 секунды. Потом пожар усилился и достиг таких размеров, что тяга двигателей резко снизилась, и он без команды отделился. Все остальные четыре двигателя работали, а система управления пыталась удержать ракету, но не смогла этого сделать. На 103-й секунде полета двигатели выключились и ракета, повинуясь земному притяжению, стала падать.
18 мая 1908 | Родился Пилюгин Николай Алексеевич, выдающийся ученый и конструктор в области систем управления ракетно-космической техники, академик, член президиума АН СССР, Директор и Главный конструктор Научно-исследовательского института автоматики и приборостроения (1946- 1982 годы), академик, член первого состава Совета главных конструкторов РКТ, дважды Герой Социалистического Труда, депутат Верховного Совета СССР, лауреат Ленинской и Государственной премий.
18 мая 1912 | Родился Петров Георгий Иванович. Ученый в области газодинамики, термодинамики. Руководитель совета по проблемам термозащиты КА при ОКБ-1. Действ. член АН СССР. Герой Соц. Труда. Лауреат Гос. премий СССР.
18 мая 1939 | Начались летные испытания первой в мире ракеты с ПВРД конструкции И.А. Меркулова. На 1 ступени использовался пороховой ракетный двигатель.
18 мая 1973 | Первый пуск унифицированной РН «Союз-У» (разработчик и изготовитель ГНПРКЦ «ЦСКБ-Прогресс»).
18 мая 1982 | Запущен первый ретрансляционный спутник «Гейзер» для телефонно-телеграфной информации в сантиметровом диапазоне волн («Космос-1366»).
Итак, ракеты были выбраны. Создание кораблей шло полным ходом, и к концу 1950 годов они уже имели вполне реальные и осязаемые черты. Как у нас, так и у американцев. Но для полета в космос нужны были еще и специально подготовленные люди, которым предстояло осваивать и эксплуатировать ракетно-космическую технику. В Советском Союзе задачи подготовки полета человека в космос были определены постановлениями ЦК КПСС и Совета Министров СССР № 22-10сс от 5 января 1959 года и № 569-264сс от 22 мая 1959 года «О подготовке человека к космическим полетам». Но это были уже «итоговые» официальные документы. Сама же подготовка фактически началась годом раньше, когда в плане работ Института авиационной медицины появились две темы: тема 5827 – отбор человека для полета в космос и тема 5828 – подготовка человека к первому космическому полету. Научным руководителем обеих тем стал Владимир Иванович Яздовский, а ответственным исполнителем – Николай Николаевич Гуровский. Так как критерии отбора формулировали авиационные врачи, а набирать будущих космонавтов предполагали среди летчиков-истребителей, то и проведение всех дальнейших мероприятий было поручено ВВС.
скрытый текст
Впрочем, выбор летчиков-истребителей в качестве будущих пилотов космических кораблей был логичен. Как правило, это были молодые люди с прекрасным здоровьем, с хорошей реакцией, умеющие действовать в экстремальных ситуациях. То есть они изначально уже обладали рядом навыков, которые могли потребоваться в космосе. Впрочем, какие именно навыки потребуются во время полета, в тот момент не мог сказать никто. Поэтому все делалось «на глазок», но «с запасом». На летчиках настаивал и Сергей Павлович Королев. Сам в прошлом пилот, он, как никто другой, осознавал необходимость именно такого выбора. Правда, с некоторой оговоркой – летчики должны были стать только первыми космонавтами. А вот в дальнейшем бок о бок с ними в космос должны были летать и представители других профессий: инженеры, врачи, ученые. Как всегда, Сергей Павлович мыслил на перспективу. И, как всегда, оказался прав. Кроме профессии, к кандидатам был предъявлен и ряд других требований: отменное здоровье, предельный возраст – 35 лет, рост – не более 175 сантиметров, вес – не более 75 килограммов. Ну и, естественно, «чистота анкеты». Кандидат должен был иметь рабоче-крестьянское происхождение, не иметь судимостей, иметь «правильных» родственников и тому подобное. И обязательно надо было состоять в партии или, в крайнем случае, учитывая возраст кандидатов, являться комсомольцем. Отбор проводился в авиационных частях ВВС, Военно-морского флота (ВМФ) и Противовоздушной обороны (ПВО). Занималась этим группа военных медиков во главе с полковником медицинской службы Евгением Анатольевичем Карповым. По авиачастям были направлены врачи института (по два человека), которые начали «бумажную» часть отбора – просмотр медицинских книжек лётчиков. На первом этапе комиссия изучила личные дела 3461 летчика истребительной авиации. По анкетным данным для личной беседы были отобраны 347 человек. После собеседований и амбулаторного медицинского обследования были отобраны 206 человек. Все они были направлены в Центральный военный авиационный госпиталь для углубленного медицинского обследования. Кстати, «путевку в космос» первому космонавту планеты Юрию Гагарину выдали проводившие отбор в его части военные медики Петр Васильевич Буянов и Александр Петрович Пчелкин. Надо сказать, что режим секретности, который окружал процесс отбора кандидатов, привел к тому, что многие летчики, которым предлагали подумать «о переучивании на новую технику», не уточняя при этом, что это за техника (хотя многие и догадывались об этом), отказались от «заманчивых перспектив» и предпочитали оставаться истребителями. Некоторые сделали это уже после начала медицинского обследования, «испугавшись» тех требований, которые предъявлялись к ним во время обследования. Кому-то не повезло еще больше – в процессе обследования у них выявили заболевания, которые закрыли им дорогу не только в космос, но и в небо, их списали с авиационной работы. В результате с октября 1959 года по апрель 1960 года во время обследования в госпитале отказались от возможности стать космонавтами 72 человека, а еще 105 человек не прошли по состоянию здоровья. На мандатную комиссию были представлены личные дела 29 летчиков, прошедших все этапы отбора. Из них были отобраны 20 человек. Именно столько должностей предусматривало штатное расписание воинской части 26266 (будущий Центр подготовки космонавтов), образованной директивой Главнокомандующего ВВС № 321141 от 11 января 1960 года. 7 марта 1960 года приказом Главнокомандующего ВВС № 267 на должности слушателей Центра были зачислены первые 12 человек: Иван Николаевич Аникеев, Валерий Федорович Быковский, Борис Валентинович Волынов, Юрий Алексеевич Гагарин, Виктор Васильевич Горбатко, Владимир Михайлович Комаров, Алексей Архипович Леонов, Григорий Григорьевич Нелюбов, Андриян Григорьевич Николаев, Павел Романович Попович, Герман Степанович Титов и Георгий Степанович Щоннин. Спустя два дня к ним присоединился Евгений Васильевич Хрунов (приказ № 292). 25 марта приказом Главкома № 363 в отряд были зачислены Дмитрий Алексеевич Заикин и Валентин Игнатьевич Филатьев, а 28 апреля приказом № 540 – Павел Иванович Беляев, Валентин Васильевич Бондаренко, Валентин Степанович Варламов и Марс Закирович Рафиков. Наконец, 7 июня приказом № 839 в отряд был зачислен Анатолий Яковлевич Карташов. Эти двадцать летчиков и образовали первый отряд советских космонавтов. В чем-то они были похожи друг на друга – молоды, здоровы. Схожим оказался у большинства и путь в авиацию, и в отряд космонавтов. Да, еще одна деталь – все они были небольшого роста – таковы были требования конструкторов, которые не имели тогда возможности усадить в корабль «гренадеров». Иван Николаевич Аникеев родился 12 февраля 1933 года в городе Лиски Воронежской области. В 1955 году окончил Ейское Военно-морское авиационное училище имени И.В. Сталина. Годом позже окончил курсы в 114-м учебном истребительном авиационном полку 12-го Военно-морского авиационного училища в городе Куйбышев (ныне – Самара). Проходил службу в частях ВВС Северного флота. Летал на самолете Як-25. К моменту зачисления в отряд космонавтов имел воинское звание старший лейтенант. Павел Иванович Беляев был самым старшим по возрасту из «двадцатки». Он родился 26 июня 1925 года в селе Челищево Рослятинского района Вологодской области. В 1938 году семья перебралась в город Каменск-Уральский Свердловской области, где в 1942 году Беляев окончил среднюю школу. В течение года работал сначала токарем, а потом – приемщиком готовой продукции местного завода № 105. Затем учился в 3-й школе летчиков ВВС в городе Сарапул. Летал на самолетах У-2 и Ут-2. В 1944 году поступил, а в 1945 году окончил Ейское Военно-морское авиационное училище. Единственный из первого набора, кто имел боевой опыт – в период с 9 августа по 3 сентября 1945 года в составе 3-й авиаэскадрильи 19-го Гвардейского истребительного авиаполка ВВС Тихоокеанского флота совершил несколько боевых вылетов в ходе войны с Японией. После окончания войны продолжил службу в авиационных частях Тихоокеанского флота. С 1956 года по 1959 год учился в Военно-воздушной академии в Монино (Московская область). После ее окончания был направлен в части ВВС Черноморского флота, где и проходил службу до зачисления в отряд космонавтов. Воинское звание на момент зачисления в отряд – майор. Самый молодой слушатель-космонавт первого набора Валентин Васильевич Бондаренко родился 16 февраля 1937 года в Харькове. Там же окончил среднюю школу и отделение Харьковского областного авиаклуба. В 1954 году поступил в Ворошиловградское военное авиационное училище летчиков. Через год был переведен в Грозненское авиаучилище, а еще через год – в Армавирское, которое и окончил в 1957 году. Служил в частях ВВС Прибалтийского военного округа. Летал на самолетах Як-11, Як-18, УТИ МиГ-15, МиГ-15бис, МиГ-17. Воинское звание – старший лейтенант. Валерий Федорович Быковский родился 2 августа 1934 года в городе Павловский Посад Московской области. В 1941–1948 годах учился в школах городов Павловский Посад, Куйбышев, Сызрань, Москва, Тегеран (Иран), где жил с родителями – работниками Министерства путей сообщения. В июне 1952 года окончил 10 классов в мужской средней железнодорожной школе № 1 города Москвы. Одновременно учился в Московском аэроклубе ДОСААФ, где получил право пилотировать самолет. В 1953 году окончил 6-ю военную авиационную школу первоначального обучения летчиков, а в 1955 году – Качинское Военное авиационное училище летчиков. Служил в авиационных частях Московского округа ПВО. Старший лейтенант. Валентин Степанович Варламов родился 15 августа 1934 года в селе Сухая Терешка Темчинского района Пензенской области. В 1953 году окончил 24-ю военную авиационную школу первоначального обучения летчиков ВВС Западно-Сибирского военного округа, а в 1955 году – Сталинградское Военное авиационное училище летчиков. Служил в 3-м Гвардейском истребительном авиаполку ПВО 15-й Гвардейской авиационной дивизии в городе Орел. Кстати, в том же полку с ним служил Валентин Филатьев, а в другом полку той же дивизии – Марс Рафиков. При зачислении в отряд космонавтов имел воинское звание старший лейтенант. Борис Валентинович Волынов родился 18 декабря 1934 года в Иркутске. В 1953 году окончил 24-ю военную авиационную школу первоначального обучения летчиков ВВС Приволжского военного округа в городе Павлодар (Казахстан), а в 1955 году – Сталинградское военное авиационное училище летчиков имени Сталинградского пролетариата в Новосибирске. Служил в авиационных частях Московского округа ПВО в Ярославле. Воинское звание – старший лейтенант. Юрий Алексеевич Гагарин родился 9 марта 1934 года в селе Клушино Гжатского района Смоленской области. В 1941 году поступил в первый класс местной школы, но вскоре учебу пришлось прервать – село было оккупировано немцами. Лишь в 1943 году, после освобождения Смоленщины, смог возобновить учебу. В 1949 году, после окончания шести классов школы в городе Гжатск, поступил в ремесленное училище № 10 города Люберцы в Подмосковье, где спустя два года получил специальность «формовщик-литейщик». В 1951 году окончил седьмой класс в школе рабочей молодежи № 1 в городе Люберцы и был направлен Московским областным управлением трудовых резервов на учебу в Саратовский индустриальный техникум. В 1955 году окончил техникум по специальности «Литейное производство» и получил диплом с отличием. Одновременно с учебой в техникуме занимался в Саратовском областном аэроклубе. На самолете Як-18 выполнил 196 полетов и налетал более 42 часов. По окончании аэроклуба был направлен в 1-е Чкаловское военное авиационное училище. Через два года окончил училище и был направлен в авиационные части ВВС Северного флота, где и служил до зачисления в отряд космонавтов. Воинское звание – старший лейтенант. Виктор Васильевич Горбатко родился 3 декабря 1934 года в поселке совхоза «Венцы-Заря» Гулькевичского района Краснодарского края. В 1953 году окончил 8-ю военную авиационную школу первоначального обучения летчиков в городе Павлоград Днепропетровской области, а в 1956 году – Батайское военное авиационное училище летчиков имени А.К. Серова в городе Батайск Ростовской области. Проходил службу в частях ВВС Одесского военного округа. Старший лейтенант. Дмитрий Алексеевич Заикин родился 29 апреля 1932 года в селе Екатериновка Сальского района Ростовской области. В 1951 году окончил 10-ю Ростовскую спецшколу ВВС. Год проучился в Армавирском военном авиационном училище летчиков, а затем был переведен во Фрунзенское военное авиационное училище летчиков 73-й воздушной армии Туркестанского военного округа. Окончил училище с квалификацией «военный летчик-истребитель». Служил в частях ВВС, дислоцировавшихся на Дальнем Востоке и в Белоруссии. Старший лейтенант. Анатолий Яковлевич Карташов родился 25 августа 1932 года в селе Первое Садовое Садовского района Воронежской области. В 1952 году окончил Воронежский авиационный техникум по специальности «техник-механик авиамоторостроения». Одновременно обучался в Воронежском аэроклубе, где получил право пилотировать самолет. В 1954 году окончил Чугуевское военное авиационное училище летчиков. Служил в частях ВВС Северного военного округа. Старший лейтенант. Владимир Михайлович Комаров родился 16 марта 1927 года в Москве. В 1945 году окончил Московскую спецшколу ВВС. Учился сначала в Борисоглебском авиационном училище летчиков, а затем – в Батайском военном авиационном училище летчиков имени А.К. Серова, которое закончил в 1949 году. Служил летчиком-истребителем в частях ВВС на Северном Кавказе и в Прикарпатье. В 1959 году окончил Военно-воздушную академию имени Н.Е. Жуковского. С 3 сентября 1959 года до зачисления в отряд космонавтов служил помощником ведущего инженера, испытателем 3-го отделения 5-го отдела научно-исследовательского института ВВС в посёлке Чкаловский в Подмосковье. Инженер-капитан. Алексей Архипович Леонов родился 30 мая 1934 года в селе Листвянка Тисульского района Кемеровской области. В 1955 году окончил 10-ю военную авиационную школу первоначального обучения летчиков в городе Кременчуг (по комсомольскому набору), а в 1957 году – Чугуевское военное авиационное училище летчиков. Служил в частях ВВС Киевского военного округа, а затем – в частях ВВС Группы советских войск в Германии. К моменту зачисления в отряд космонавтов имел налет 278 часов. В отряд пришел в звании лейтенанта. Правда, уже 28 марта 1960 года ему было присвоили следующее воинское звание. Конец ознакомительного фрагмента.
19 мая 1947 | Выпущен приказ министра тяжелого машиностроения СССР по выделению на заводе «Подъемник» конструкторской группы для разработки ТД агрегатов СК ракеты Р-1. В 1958 группа преобразована в Центральное Конструкторское Бюро тяжелого машиностроения.
19 мая 1971 | Запущена АМС «Марс-2». Проведено фотографирование поверхности Марса с орбиты, измерение температуры поверхности планеты, определены давление, температура атмосферы Марса. При подлете к Марсу отделен СА, доставивший на Марс вымпел с изображением герба СССР.
19 мая исполняется 45 лет (1972) со дня запуска в СССР (космодром Плесецк) второго спутника связи типа "Молния-2".
19 мая исполняется 40 лет (1977) со дня запуска в СССР (космодром Плесецк) спутника "Космос-909" (мишень "Лира" для испытания противоспутниковых систем).
19 мая исполняется 30 лет (1987) со дня запуска в СССР (космодром Байконур) грузового корабля "Прогресс-30".
А.Ж.
Это сообщение отредактировал Agleam - 19-05-2017 - 18:40
Agleam
Вячеслав Голованов
Марс-2 – первый изготовленный человеком аппарат, коснувшийся поверхности Марса
27 ноября 1971 года, поверхности Марса коснулся первый из аппаратов, созданных человеком. Это был спускаемый аппарат советской автоматической межпланетной станции "Марс-2". К сожалению, первая в мире попытка мягкой посадки на Красную планету закончилась неудачей.
Станция «Марс-2» состояла из орбитальной станции и спускаемого аппарата с автоматической станцией, которая должна была работать на поверхности Марса. Станция управлялась навигационной системой под управлением вычислительной машины. Система ориентировалась в пространстве по Солнцу, Земле и звезде Канопус.
Орбитальная станция была снабжена магнитометром, радиометром, измерявшим распределение температуры по поверхности планеты, различные фотометры для изучения рельефа, отражательной способности поверхности, плотности атмосферы, и т.п. Также на борту были две фототелевизионные камеры. Спускаемый аппарат снизу закрывал конический тормозной экран. Аппарат был снабжён парашютами и твердотопливным двигателем.
После запуска в мае 1971 года и полугодового полёта, межпланетная станция подлетела к Марсу и спускаемый аппарат успешно отстыковался. К сожалению, ему не удалось повторить успех Венерианской миссии – из-за ошибки программистов бортовая ЭВМ сработала неправильно. Из-за неверных данных угол входа в атмосферу у модуля оказался больше расчётного – он слишком круто вошёл в атмосферу и не успел затормозить. Достигнув поверхности, аппарат разбился.
Орбитальная станция работала более 8 месяцев, но её функционирование тоже нельзя назвать успешным – из-за плохой телеметрии почти все данные были утеряны. Вообще, все миссии СССР и России на Марс преследовал какой-то злой рок – ни одна из них не была полностью удачной. Последней попыткой была миссия «Фобос-Грунт», станция которой из-за отказа двигательной установки вообще не смогла покинуть окрестности Земли.
Но всё же, «Марс-2» первым из изготовленных человеком аппаратов коснулся поверхности Марса.
20 мая 1894 | Родился Благонравов Анатолий Аркадиевич. Предс. Комиссии АН СССР по исследованию и использованию косм. пр-ва. Д.т.н. Профессор. Действ. член АН СССР. Дважды Герой Соц. Труда. Лауреат Ленинской и Гос. премий. Засл. деятель науки и техники РСФСР.
20 мая 1908 | Родился Кривошеин Николай Афанасьевич. Нач. и гл. конструктор ЦКБ ТМ (1953-1964 и 1965-1976). Рук. Создания агрегатов СК косм. ракет и первого УКП шахтного типа. К.т.н. Герой Соц. Труда. Лауреат Ленинской и Гос. премий.
20 мая 1919 | Родился Абрамов Анатолий Петрович. Ведущий специалист в области наземного оборудования для испытаний РКТ в ОКБ-1. Зам. ген. конструктора. Д.т.н. Профессор. Лауреат Ленинской премии.
20 мая 1923 | Родился Агаджанов Павел Артемьевич. Генерал-лейтенант. Зам. нач. Центра командно-измерит. комплекса по научной работе (1957-1971). Профессор. Член-корр. АН СССР, РАН, почетный член РАКЦ. Лауреат Ленинской и Сов. Мин. СССР премий.
20 мая 1926 | Родился Серебренников Владимир Алексеевич. С 1987 г. по 1998 г. – первый заместитель генерального конструктора и генерального директора, с 1998 г. –по наст. время - заместитель главного конструктора ФГУП «НПО им. С.А. Лавочкина». В 1980 г. Серебренникову В.А. присуждена государственная премия СССР за работу в области аппаратостроения. В 1986 г. присвоено звание «Героя Социалистического труда» с вручением ордена Ленина и Золотой медали «Серп и Молот» за большой вклад в осуществление международного проекта «Венера – Комета Галлея». При непосредственном участии, а затем и под техническим руководством В.А. Серебренникова разработаны конструкции всех основных изделий, созданных в НПО им. С.А. Лавочкина с конца 50-х годов.
20 мая 1938 | Родился Аксенов Николай Иванович. Ген. директор ПО «Баррикады». Ген. конструктор пусковых установок РВСН. К.т.н. Член-корр. Российской артил. Академии наук. Лауреат Гос. премии.
20 мая 1954 | 1954 – Обсудив предложение С.П. Королева об отказе от разработки ракеты Р-3 и форсировании работ над двухступенчатой МБР Р-7, Правительство СССР приняло Постановление о создании баллистической ракеты межконтинентальной дальности полета.
20 мая 1995 | Запущен орбитальный модуль «Спектр» для работы в составе комплекса «Мир».
20 мая исполняется 35 лет (1982) со дня запуска в СССР (космодром Плесецк) спутника системы предупреждения о ракетном нападении "Космос-1367" ("Око" № 26).
20 мая исполняется 20 лет (1997) со дня запуска в США (Мыс Канаверал) норвежского телекоммуникационного спутника Thor-2.
"СПЕКТР", исследовательский модуль, представляет собой единый герметичный отсек большого объема с оборудованием. На его внешней поверхности размещены агрегаты ДУ, топливные баки, четыре панели батерей с автономной ориентацией на солнце, антенны и датчики.
Изготовление модуля, начатое в 1987 году, было практически закончено (без установки аппаратуры, предназначенной для программ Министерства Обороны) к концу 1991 года. Однако, с марта 1992 года из-за начавшегося кризиса в экономике модуль оказался "законсервированным".
скрытый текст
Для окончания работ по "Спектру" в середине 1993 года ГКНПЦ имени М.В. Хруничева и РКК "Энергия" имени С.П. Королева вышли с предложением о переоснащении модуля и обратились для этого к своим зарубежным партнерам. В результате переговоров с NASA быстро было принято решение об установке на модуль американского медицинского оборудования, используемого в программе "Мир-Шаттл", а также его дооснащении второй парой солнечных батарей. При этом, по условиям контракта доработка, подготовка и запуск "Спектра" должны были быть выполнены до первой стыковки "Мира" и "Шаттла" летом 1995 года.
Жесткие сроки потребовали от специалистов ГКНПЦ имени М.В.Хруничева напряженной работы по коррекции конструкторской документации, изготовлению батарей и проставки для их размещения, проведению необходимых прочностных испытаний, монтажу аппаратуры США и повторению комплексных проверок модуля. Параллельно специалисты РКК "Энергия" готовили на Байконуре новое рабочее место в МИКе орбитального корабля "Буран" на площадке 254.
Все работы были закончены в срок. В конце 1994 года "Спектр" поступил на космодром и 20 мая 1995 года был успешно выведен на орбиту.
1 июня 1995 года комплекс дополнил исследовательский модуль "Спектр", запущенный 20 мая, который предназначен для работы в составе орбитального комплекса "Мир" и проведения исследований природных ресурсов Земли, верхних слоев земной атмосферы, собственной внешней атмосферы орбитального комплекса, геофизических процессов естественного и искусственного происхождения в околоземном космическом пространстве и в верхних слоях земной атмосферы, для проведения медико-биологических исследований по совместным российско-американским программам "Мир-Шаттл" и "Мир-НАСА", для оснащения станции дополнительными источниками электроэнергии.
26 мая с первой попытки он был состыкован с "Миром", а затем, аналогично "предшественникам", переведен с осевого на боковой узел, освобожденный для него "Кристаллом".
Дополнительно к перечисленным задачам модуль "Спектр" был использован в качестве грузового корабля снабжения и доставил на орбитальный комплекс "Мир" запасы топлива, расходуемые материалы и дополнительное оборудование.
Модуль состоит из двух отсеков: герметичного приборно-грузового и негерметичного, на котором установлены две основные и две дополнительные солнечные батареи и приборы научной аппаратуры. Модуль имеет один активный стыковочный агрегат, расположенный по его продольной оси на приборно-грузовом отсеке. Штатное положение модуля "Спектр" в составе станции "Мир" - ось -Y.
25 июня 1997 года в результате столкновения с грузовым кораблем "Прогресс М-34" модуль "Спектр" был разгерметизирован и сегодня практически "выключен" из работы комплекса. Беспилотный корабль "Прогресс" сбился с курса и врезался в модуль "Спектр". Станция потеряла герметичность, были частично разрушены солнечные батареи "Спектра".
Команде удалось герметизировать "Спектр", закрыв ведущий в него люк до того, как давление на станции снизилось до критически низкого.
Внутренний объем модуля был изолирован от жилого отсека.
Краткие характеристики модуля Регистрационный номер 1995-024A / 23579 Дата и время старта (всемирное время) 03ч.33м.22с. 20.05.1995 Место старта Байконур, площадка 81Л Ракета-носитель Протон-К Масса корабля (кг) 17840 http://www.astrolab.ru/cgi-bin/manager.cgi...um=776&x=14&y=9
Это сообщение отредактировал Agleam - 20-05-2017 - 09:45
21 мая 1937 | Родился Афанасенко Николай Иванович. Зам. ген. директора – исп. директор НПП «Звезда». Один из создателей катапультных систем КК «Восток» и боевых самолетов, амортизационных кресел космонавтов и систем водообеспечения КК «Восход» и «Союз», шлюзовой камеры КК «Восход-2». Член-корр. Международной академии информатизации. Почетный авиастроитель.
21 мая 1941 | Родился Левченко Анатолий Семенович. Летчик-космонавт СССР. Герой Сов. Союза. Выполнил полет на КК «Союз-ТМ-4»-«Мир»-«Союз-ТМ-3» (1987) совместно с В.Г. Титовым и М.Х. Манаровым.
21 мая 1953 | С полигона «Капустин Яр» произведен первый успешный пуск БРДД на высококипящих долгохранимых компонентах топлива Р-11, разработанной под руководством С.П. Королева. Масса ракеты 5,35 т. Дальность полета 270 км. Масса неотделяемой ГЧ 0,69 т.
21 мая 1955 | Ветеран Байконура Муза Тихоновна Шашкова приехала с мужем-строителем в безлюдную степь строить космодром. М.Т.Шашкова – единственная из всех первопроходцев, до сих пор проживающая в городе. Она проработала более 40 лет в школе №1, за заслуги перед космодромом ей присвоено звание «Почетный гражданин города Байконура».
21 мая 1965 | В г. Ленинске был образован отдел внутренних дел. В 1994 году ОВД был преобразован в УВД комплекса «Байконур». За эти годы подразделение спецмилиции стало «космической милицией», стоящей на страже закона и порядка Байконура.
21 мая 2001 | Первый пуск РН «Союз-ФГ» с автоматическим грузовым кораблем «Прогресс М-1».
21 мая исполняется 80 лет (1937) со дня рождения одного из создателей катапультных систем корабля “Восток” и самолетов, амортизационных кресел космонавтов, шлюзовой камеры корабля “Восход-2” Николая Ивановича Афанасенко.
21 мая исполняется 75 лет (1942) со дня рождения американского астронавта Роберта Клайда Спрингера (Robert Clyde Springer).
21 мая исполняется 35 лет (1982) со дня запуска в СССР (космодром Байконур) разведывательного спутника “Космос-1368” (“Зенит-6У”).
21 мая исполняется 30 лет (1987) со дня запуска в СССР (космодром Плесецк) спутника ДЗЗ “Космос-1846” (“Ресурс Ф1”).
Ракета-носитель "Союз-ФГ" предназначена для выведения на околоземную орбиту автоматических космических аппаратов социально-экономического, научно-исследовательского и специального назначения, а также пилотируемых кораблей типа "Союз-ТМА" и грузовых космических кораблей типа "Прогресс-М" по программе Международной космической станции. Ракета-носитель (PH) «Союз-ФГ» является дальнейшей модификацией серийной ракеты «Союз». Модернизация серийной РН «Союз» заключается в использовании на центральном и боковых блоках двигателей с улучшенными энергетическими характеристиками. Конструктивно РН «Союз-ФГ» выполнена по схеме с параллельным отделением боковых ракетных блоков в конце работы первой ступени и поперечным отделением ракетного блока второй ступени по окончании его работы. На первом этапе полёта работают двигатели четырех боковых и центрального блоков, на втором, после отделения боковых блоков, - только двигатель центрального блока.
скрытый текст
Маршевые двигатели первой и второй ступеней РН «Союз-ФГ» по сравнению с двигателями РН «Союз» имеют повышенные энергетические характеристики за счет применения в смесительных головках однокомпонентных форсунок, обеспечивающих улучшенное смесеобразование. Ракета-носитель «Союз-ФГ» обеспечивает выведение на орбиты всей номенклатуры космических аппаратов, выводимой РН «Союз». Система управления РН «Союз-ФГ» заимствуется с базовой РН «Союз» и обеспечивает требуемые, как на РН «Союз», точностные характеристики выведения на орбиту с незначительной доработкой. Для контроля состояния систем, агрегатов и конструкции РН на участке выведения блоки первой и второй ступеней РН «Союз-ФГ» и блок третьей ступени оснащены радиотелеметрическими системами, которые заимствуются с РН «Союз». Первая ступень ракеты-носителя включает четыре боковых блока конической формы, закреплённых в шаровых опорах центрального блока. Конструктивно-компоновочная схема бокового блока состоит из силового конуса, несущего конического бака окислителя, межбакового отсека, несущего конического бака горючего, отсека баков перекиси водорода и жидкого азота и цилиндрического хвостового отсека специальной формы. В хвостовом отсеке каждого бокового блока размещается автономный жидкостный двигатель однократного включения РД-107А, работающий на жидком кислороде и керосине и оснащенный четырьмя маршевыми камерами и двумя рулевыми соплами. Для управления полётом на каждом боковом блоке с внешней стороны, противоположной центральному блоку, на небольшом пилоне установлен аэродинамический руль, выполненный в виде треугольного крыла малого удлинения. Для привода руля имеется электрическая рулевая машина. Двигатели боковых блоков работают в течение -118 секунд после старта, после чего отключаются. Выключение происходит по результатам сравнения текущего значения скорости с расчетным. После отключения двигателей боковые блоки отделяются от центрального блока и сбрасываются. Вторая ступень (центральный блок) состоит из хвостового отсека, в котором установлен двигатель однократного включения РД-108А (содержащий четыре маршевых камеры и четыре рулевых сопла), отсека бака перекиси водорода, в котором также установлен бак жидкого азота, отсека бака горючего, межбакового отсека, отсека бака окислителя и приборного отсека. Запуск ЖРД центрального и боковых блоков производится на Земле, что даёт возможность контролировать работу двигателей в переходном режиме и при возникновении неисправностей во время пуска отменять пуск ракеты. Это обеспечивает повышение безопасности эксплуатации. Управление полётом по трем осям осуществляется с помощью четырех рулевых камер двигателя РД-108А. Номинальное время работы двигателя центрального блока составляет -280-290 секунд. Разделение второй и третьей ступеней происходит по «горячей схеме». Третья ступень (блок «И»), состоящая из переходного отсека, бака горючего, бака окислителя, хвостового отсека и двигателя, установлена на центральном блоке и соединена с ним с помощью ферменной конструкции. Блок «И» снабжен двигательной установкой с РН «Союз», состоящей из четырехкамерного двигателя однократного включения и четырех поворотных рулевых сопел (используемых для управления полётом по трем осям). Маршевый двигатель третьей ступени включается примерно за две секунды до отключения центрального блока. Газы, истекающие из сопел двигателя третьей ступени, непосредственно отделяют ступень от центрального блока. Время работы двигателя третьей ступени составляет -230 секунд. После отключения двигателя и отделения КА (или разгонного блока с КА) третья ступень выполняет маневр увода путем открытия дренажного клапана в баке горючего. Калькуляция цены на изделие (ценообразование без учета баланса спроса и предложения), тыс. руб. Годы 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Цена 86713 124488,8 205675,2 245300 287887,7 336418,5 345354 373982,1 422629 498726 527650 Сырье и материалы 5453,3 4590,7 9042,5 6502 8228 11383,5 9994,5 12912,2 15869,5 15935,8 32494,9 Покупные комплект. изд. 44730,2 60550 112991,7 128398,3 161900 185240,7 189967,1 212919 236525,3 261563,8 273275,5 Оплата труда с отчислен. 1780,4 2867 3828,3 4629,5 7481,5 8224,5 10440,1 12233,3 14347,4 17739,7 18314,1 Накладные расходы 16718,2 27112,6 36420,6 42596,6 44334,9 52089,6 58683,8 60352 73253,7 90714 99773,8 Прочие 3578,7 7866,5 10003 17314 18714,6 18814,6 21127,7 26922,2 21967,5 42266,9 26679,1 Прибыль 14752,3 21501,2 33389,1 45859,6 47227,8 60665,6 55140,8 48643,4 60665,6 70505,8 77112,6
22 мая 1937 | Родился Смотриков Олег Иванович. Конструктор автономных средств жизнеобеспечения для КК и самолетов. Участник создания шлюзовой камеры для КК «Восход-2». Зам. ген. конструктора НПП «Звезда». Лауреат Гос. премии.
22 мая 1946 | На базе СКБ завода «Компрессор» организовано ГСКБ Спецмаш для создания пускового, подъемно-транспортного, заправочного и вспомогательного наземного оборудования для технических и стартовых комплексов ракет дальнего действия и МБР (ныне КБОМ им. В.П. Бармина).
22 мая 1959 | Принято постановление правительства о разработке корабля-спутника для полета человека.
22 мая исполняется 50 лет (1967) со дня запуска в СССР (космодром Плесецк) разведывательного спутника “Космос-161” (“Зенит-4”).
22 мая исполняется 50 лет (1967) со дня запуска в США (база ВВС США Ванденберг) разведывательного спутника OPS 4321 (GAMBIT SV 987) с камерой КН-7 и полетным заданием 4037.
22 мая исполняется 5 лет (2012) со дня запуска в США (мыс Канаверал) грузового корабля Dragon с полетным заданием C2+.
23 мая 1914 | Родился Бушуев Константин Давыдович. Ученый в области РКТ. Один из создателей ряда КА для исследования околоземного космического пространства: Луны, Венеры, Марса, КК «Восток», «Восход», «Союз». Зам. гл. конструктора ОКБ-1. Советский технический директор проекта ЭПАС. Член.-корр. АН СССР. Герой Соц. Труда. Лауреат Ленинской и Гос. премий.
23 мая 1920 | Родился Даревский Сергей Георгиевич. Соратник С.П.Королева. Начальник-главный конструктор специального ОКБ ЛИИ им. М.М. Громова по системам индикации для КА. К.т.н. Лауреат Ленинской премии. Действ. член Международной академии информатизации. Почетный академик РАКЦ.
23 мая 1934 | Осуществлен первый полет экспериментальной крылатой ракеты 06/1, спроектированной в ГИРД под руководством С.П. Королева и оснащенной гибридным ракетным двигателем и автоматом устойчивости.
В апреле 1957 года в ОКБ-1 был подготовлен план проектных исследований по созданию пилотируемого корабля-спутника и автоматических аппаратов для исследования Луны. Представленный план проведения проектных работ по пилотируемым космическим кораблям базировался на использовании межконтинентальной баллистической ракеты Р-7. К этому времени уже был создан значительный теоретический и практический задел, который позволил ускорить эти работы. Была выпущена проектно-конструкторская документация, и проведена экспериментальная отработка первых ИСЗ (ПС-1, ПС-2, объект "Д"). Накоплен опыт по разработке головных частей, завершена отработка их отделения от ракеты и входа в плотные слои атмосферы, уточнены методики расчётов тепловых потоков, воздействующих на головные части при входе их с гиперзвуковой скоростью в плотные слои атмосферы. По данным проектных проработок - выводимая на орбиту масса полезного груза ракетой-носителем Р-7 при введении в её состав 3 ступени может быть увеличена до 5 т. Получены материалы отдела прикладной математики Академии наук СССР, согласно которым при достаточно пологом баллистическом спуске с орбиты ИСЗ перегрузки нарастают плавно и их максимум составит около 10.
скрытый текст
С сентября 1957 г. по январь 1958 г. в ОКБ-1 проводились исследования по оценкам внешних тепловых потоков, температур наружных поверхностей, массе теплозащиты и максимальным перегрузкам для различных схем спускаемых с орбиты ИСЗ аппаратов в большом диапазоне значений аэродинамического качества (от нескольких единиц до нуля).
Параметры траекторий движения в атмосфере рассчитывались методом численного интегрирования первоначально на ручных электромеханических арифмометрах, а затем - на БЭСМ-1. Мгновенные значения внешних тепловых потоков и равновесных температур определялись по аналитическим методикам НИИ-1, а позже - по специально построенным на их основе номограммам, как функции скорости полёта и плотности атмосферы.
Прогрев теплозащиты по толщине определялся численными методами. При этом, изменениями равновесной температуры наружной поверхности пренебрегали.
Проведённые исследования показали, что равновесная температура поверхности даже для крылатого аппарата с высоким аэродинамическим качеством и низкой удельной массовой нагрузкой на несущую поверхность превышает уровень, допустимый для жаропрочных конструкционных сплавов.
К апрелю 1958 г. проведённые исследования позволили установить, что для первого пилотируемого спутника Земли аэродинамическое качество спускаемого аппарата (СА) должно быть в диапазоне 0,5-0,6 и определяться допустимыми для человеческого организма перегрузками; что предпочтительной формой СА является тупой конус со скругленным носом и сферическим днищем при максимальном диаметре около 2 м и что наиболее приемлемым способом приземления будет катапультирование пилота на высоте нескольких километров, при этом СА не спасается.
Выполненные работы не достигли этапа комплексной проектной разработки конкретного пилотируемого корабля-спутника.
Встал вопрос о выборе конкретного направления для проведения проектной "завязки" орбитального пилотируемого корабля с аэродинамическим качеством в диапазоне 0,5-0,6.
В апреле 1958 г. на совещании представители авиационной медицины было сделано сообщение о допустимости для человека, при определенном положении тела, перегрузок порядка 10, что сняло основное принципиальное препятствие на пути выбора аппарата более простой баллистической схемы для первых орбитальных полётов человека.
В качестве первоочередных были определены задачи: проведение комплексной проектной "завязки" конкретного аппарата для первого орбитального полёта человека и подготовка проектных материалов в форме отчёта - аванпроекта, обосновывающего возможность принятия решения о развертывании опытно-конструкторских работ.
Детальная разработка состава, структуры, объёма и формы материалов отчёта позволила параллельно вести работы по всем основным направлениям в необходимом объёме, в результате чего сроки выпуска отчёта были сокращены в два-три раза. Отчёт был завершён в середине августа 1958 г.
После принятия концепции баллистического спуска область выбора форм СА сузилась до осесимметричных. Была принята сферическая форма СА, имеющая достоверные и стабильные аэродинамические характеристики во всех диапазонах углов атаки и на всех скоростях, обеспечивающая приемлемую массу тепловой защиты.
В основу проектирования был положен обязательный "стратегический" принцип: надёжность и безопасность полёта человека должны быть обеспечены функциональным дублированием систем и агрегатов принципиально разными способами реализации полётных операций. Применение только "простого", чисто количественного, дублирования допускалось как исключение. Такой подход позволил избежать случайностей при создании летательного аппарата принципиально нового типа.
В отчёте "Материалы предварительной проработки вопроса о создании спутника Земли с человеком на борту (объекта ОД-2)" были рассмотрены основные лётные характеристики, компоновочная схема ОД-2, форма СА и вопросы устойчивости, состав оборудования, компоновка и система его приземления, тепловая защита СА, тепловой режим на орбите, система управления и ориентации, измерение и связь, программа экспериментальных работ и сделаны следующие выводы и рекомендации:
На орбиту ИСЗ с помощью доработанной трёхступенчатой ракеты можно вывести космический аппарат массой 4500...5500 кг. На космическом аппарате массой 4500...5500 кг можно разместить человека, необходимое служебное и научное оборудование. Для первых полётов человека целесообразно использовать баллистическую схему спуска с орбиты, обеспечивающую реализацию полёта в наиболее сжатые сроки. При спуске космического аппарата с орбиты температура его поверхности достигает 2500...35000С, а максимальные осевые перегрузки 8...9. (такие перегрузки допустимы при действии в направлении грудь-спина). Воздействие высоких температур потребует тепловой защиты, масса которой составит 1300...1500 кг. Для первых полётов целесообразно выбрать круговую орбиту с минимально допустимой высотой 250 км. Основной параметр, определяющий характеристики спуска (угол вектора скорости входа в плотные слои атмосферы на высоте 100 км) целесообразно выбрать равным минус 20. Тормозной импульс должен составить 65000...85000 кгс. В качестве формы СА можно рекомендовать сферу. Для устойчивого движения СА в плотных слоях атмосферы и обеспечения низких знакопеременных нормальных перегрузок необходимы малые углы атаки и малые угловые скорости космического аппарата при входе в атмосферу. На космических аппаратах для первых полётов в космос человек во время полёта может находиться в СА, т.е. не нужна вторая орбитальная кабина. Надёжное приземление пилота обеспечивается программным катапультированием его на высоте 8...10 км. Необходимы меры для ограничения в кабине уровня шумов и вибраций. Космический аппарат должен иметь систему управления и ориентации, при этом в качестве исполнительных органов управления можно использовать вращающиеся массы и реактивные силы (сжатый газ, воздух). Необходимы система контроля орбиты и выдачи команд с наземных пунктов управления, а также двухсторонняя радиотелефонная связь. Оборудование для орбитального полёта и тормозную двигательную установку (ТДУ) целесообразно разместить в отдельном отсеке. Для обеспечения надёжности необходимо провести экспериментальную отработку систем космического аппарата в стендовых условиях; систем катапультирования и приземления при бросковых испытаниях с самолетов и при пусках ракет Р-2 или Р-5 в условиях, близких к аварийным для 1 ступени РН; тепловой защиты в натурных условиях в процессе пуска моделей по "пологой траектории", а также объекта с животными вместо пилота в суборбитальном полёте и объекта по штатной программе с животными вместо пилота (один-два пуска). При разработке отчёта по космическому аппарату ОД-2 большое внимание уделялось функциональному дублированию в части катапультирования пилота и приземлению его в СА; системе обеспечения жизнедеятельности в кабине и в скафандре; ориентации по инфракрасной вертикали и ручной ориентации; процесса ввода парашюта по сигналам от бародатчиков и инерционных датчиков; разделению отсеков космического аппарата по команде от программно-временного устройства и от термодатчиков и т.д. Из-за массовых и компоновочных ограничений осталась незадублированной лишь тормозная двигательная установка.
Осенью 1958 г. началась разработка конструкторской документации на корпусные детали и конструкцию отсеков корабля-спутника, а также выдача технических заданий (ТЗ) на бортовые системы.
Постановлением ЦК КПСС и СМ СССР от 22 мая 1959 г. N 569-264 была поставлена задача по разработке экспериментального варианта корабля-спутника, который должен создать предпосылки для разработки спутника-разведчика и спутника для полёта человека. В нем же были утверждены и основные исполнители:
ОКБ-1 (головной исполнитель по кораблю) - конструкция корабля, система ориентации, система управления на участке работы ТДУ, система терморегулирования, система аварийного спасения, сборка и комплексные испытания на заводе и технической позиции; ОКБ-2 (А.М.Исаев) - тормозная двигательная установка; НИИ-88 (Г.А.Тюлин) - автономная система регистрации "Мир-2"; ЦКБ-598 (Н.Г.Виноградов) - оптический ориентатор "Взор" и фотоэлектрический датчик системы солнечной ориентации "Гриф"; Завод N 918 скафандр с системой вентиляции и кислородного питания, кресло, носимый аварийный запас, ассенизационное устройство, манекен для беспилотного корабля; ЛИИ - пульт управления; ОКБ-124 - система регенерации воздуха; НИИ-137 (Костров) - система аварийного подрыва (для беспилотного корабля); НИИ-695 (Л.И.Гусев) - радиотелеметрическая линия "Заря" (система связи и пеленгации СА); НИИ-648 (А.С.Мнацаканян) - командная радиолиния; ВНИИТ (Н.С.Лидоренко) - источники тока; ОКБ МЭИ (А.Ф.Богомолов) - радиотелеметрическая система "Трал-П1", система радиоконтроля орбиты "Рубин", телевизионная система "Топаз"; ГНИИА и КМ (А.В.Покровский) совместно с СКТБ "Биофизприбор" НИИ ЯФ МГУ (С.Н.Вернов), ИБФ Ака-демия медицинских наук СССР - медицинская и дозиметрическая аппаратура, питание и водоснабжение космонавта; НИЭИ ПДС совместно с заводом N 81 ГКАТ - парашютная система СА; КГБ (К.В.Булгаков) и Красногорский механический завод (Н.М.Егоров) - кинофотоаппаратура. Всего в создании только корабля-спутника участвовало 123 организации, включая 36 заводов.
В апреле 1960 г. в ОКБ-1 был разработан эскизный проект корабля-спутника "Восток-1", в котором излагались основные материалы по экспериментальному кораблю-спутнику "Восток-1" (1К), на котором должны отрабатываться основные системы и конструкция спутника-разведчика "Восток-2" (для маршрутной съёмки и радиоразведки средств противовоздушной обороны) и спутника "Восток-3" - для полёта человека.
Постановлением ЦК КПСС и СМ СССР от 10 декабря 1959 г. N 1388-618 "О развитии исследований космического пространства" была поставлена задача по осуществлению первых полётов человека в космическое пространство. Постановлением ЦК КПСС от 4 июня 1960 г. N 587-238 "О плане освоения космического пространства" были установлены сроки запуска кораблей спутников: май 1960 г. - двух спутников без теплозащиты и жизнеобеспечения (1КП), до августа 1960 г. - трёх спутников "Восток -1" (1К) для отработки систем корабля и аппаратуры фото- и радиоразведки и сентябрь-декабрь 1960 г. - спутника "Восток-3" для отработки аппаратуры и системы жизнеобеспечения, и, наконец, Постановлением ЦК КПСС и СМ СССР от 11 октября 1960 г. N 1110-462 было предписано осуществить подготовку и запуск космического корабля "Восток" (3КА) с человеком на борту в декабре 1960 г. и считать это задачей особого значения.
* Схема космического корабля "Восток". 1 - антенна системы командной радиолинии, 2 - антена радиосвязи, 3 - кожух электроразъемов, 4 - входной люк, 5 - контейнер с пищей, 6 - стяжные ленты, 7 - ленточные антенны, 8 - тормозной двигатель, 9 - антенны связи, 10 - служебные люки, 11 - приборный отсек, 13 - газовые баллоны системы жизнеобеспечения (16 шт.), 14 - катапультируемое кресло, 15 - радиоантенна, 16 - иллюминатор, 17 - технологический люк, 18 - телевизионная камера, 19 - теплозащита, 20 - блок электронной аппаратуры. Космический корабль "Восток" (ЗКА), также как и корабль "Восток-1" (1К) состоял из спускаемого аппарата и приборного отсека, в котором располагалась ТДУ с двигателем тягой 1600 кгс. СА крепился к приборному отсеку стяжными лентами, на которых располагалась часть антенн радиосистем. После полёта космический корабль по орбите СА вместе с находящимся в нем оборудованием и космонавтом возвращался на Землю. Космонавт находился в специальном скафандре, обеспечивающем при необходимости пребывание его в разгерметизированной кабине корабля в течение 4 ч и защиту при катапультировании из гермокабины на высотах до 10 000 м.
В мае 1959 г. был выпущен отчёт с баллистическими расчётами вариантов спуска космического корабля с орбиты. Большое опасение вызывало обеспечение ориентации космического корабля, являющейся непременным условием выдачи тормозного импульса для спуска его с орбиты. Система управления космического корабля разрабатывалась под руководством заместителя Главного конструктора Б.Е.Чертока.
Система ориентации корабля "Восток" имела два независимых режима работы: с автоматической одноосной ориентацией на Солнце(АСО) и ручным управлением (РУ), а её исполнительными органами являлись два идентичных комплекта (по восемь двигателей в каждом) микрореактивных двигателей, работающих на сжатом азоте. Запас рабочего тела составлял 10 кг.
В состав АСО входили блоки датчиков положения Солнца и датчиков угловой скорости (ДУС) и счётно-решающий блок. Датчик Солнца (прибор "Гриф") был выполнен по щелевой схеме на принципе перекрытия полей зрения трёх фотоэлементов. Контрольный датчик сигнализировал о правильности ориентации перед включением ТДУ. Датчики угловой скорости (приборы ДУС-Л2), представляли собой двухстепенные поплавковые гироскопы с механической обратной связью (датчики угловой скорости каждого канала были троированы). Счётно-решающий блок содержал элементы сравнения сигналов, поступающих от датчика Солнца и ДУС, логическую схему и генератор импульсов постоянной длительности и частоты.
Логика управления могла реализовать как непрерывный режим работы исполнительных органов, так и импульсный, т.е. режимы поиска Солнца (как ориентира) и поддержание положения ориентации, были объединены.
Ручное управление включало оптический прибор для визуальных наблюдений, датчики угловой скорости, ручку ориентации, блок логики и формирования управляющих сигналов.
Оптический прибор (ориентатор "Взор") имел кольцевую зеркальную зону, установленную на иллюминаторе, и матовый экран для проектирования изображения. На экране были нанесены стрелки, указывающие направление бега подстилающей поверхности Земли при орбитальной ориентации "на торможение" перед спуском при торможении с помощью ТДУ. Зеркальное кольцо обеспечивало наблюдение горизонта Земли при высотах 150-350 км. Непосредственное наблюдение подстилающей поверхности через центр экрана давало возможность контролировать направление полёта.
Процесс управления ориентацией корабля условно можно разделить на три этапа: первый - гашение начальных возмущений, второй - поиск Солнца (при АСО) или Земли (при РУ) и третий - поддержание ориентированного состояния.
Летом 1960 г. успешно завершилась разработка и начались испытания всех основных систем и агрегатов корабля. Большая часть из них была проведена на экспериментальных установках, при этом крышки люка отстреливались 50 раз, головной обтекатель сбрасывался 5 раз, макет корабля отделялся от ракеты 15 раз, спускаемый аппарат и приборный отсек разделялись 5 раз, отрывная плата отстреливалась 16 раз и т.д.; много испытаний было проведено по отработке герметичности.
На макетах были отработаны тепловые процессы, проверена работа систем приземления и катапультирования (с вышки, вертолета, самолета). Для отработки парашютной системы были изготовлены три спускаемых аппарата, которые сбрасывались с самолетов Ан-12 с высот 9...12 км, а для отработки их плавучести были проведены испытания на Черном море при волнении до 4 баллов на специальном морском макете. В термобарокамере и на самолете Ту-104 отрабатывались вопросы жизнедеятельности и влияния невесомости.
Корабль на космодром отправлялся по отсекам. На ТП он испытывался в объёме испытаний КИС завода. А также в собранном виде после сборки корабля (у заправленной ТДУ проверялось исходное состояние).
По окончании испытаний на ТП проводились стыковка с РН и накатка головного обтекателя.
Для лётной отработки было выделено семь кораблей.
На стартовой позиции подготовка РН и корабля проводилась по специально разработанным графикам. Космонавт занимал место в КК только после окончания заправки РН, т.е. по готовности её к пуску.
Первый корабль был изготовлен в упрощенном варианте: без тепловой защиты, систем жизнеобеспечения и приземления. Запуск такого корабля (1КП) был осуществлен 15 мая 1960 г. только для проверки его основных систем. Корабль массой 4152 кг был выведен на орбиту, близкую к круговой, высотой около 320 км и наклонением 650.
В соответствии с программой 19 мая в 2 ч 52 мин для спуска корабля с орбиты была передана команда на включение ТДУ и отделение СА. Однако в результате неисправности прибора системы ориентации направление тормозного импульса отклонилось от расчётного, скорость корабля увеличилась и он перешел на более высокую орбиту, при этом произошло нормальное отделение СА.
28 июля 1960 г. был осуществлен первый запуск корабля (1К) с подопытными животными (собаки Чайка и Лисичка) на борту. Однако вследствие аварии РН (взрыв камеры сгорания двигателя блока Г на 28,5 с) вывод корабля на орбиту не состоялся.
19 августа 1960 г. запуск корабля был успешным и подопытные животные (собаки Белка и Стрелка) - впервые 20 августа возвратились с орбиты на Землю. Основной задачей этого запуска являлись дальнейшие исследования действия фактов космического полёта на биологические объекты с целью проверки систем обеспечения жизнедеятельности человека, а также средств безопасности его полёта и возвращения на Землю. В катапультируемом контейнере, кроме двух собак, находились 12 мышей, насекомые, растения, грибковые культуры, семена кукурузы, пшеницы, гороха, муки, некоторые виды микроб и другие биологические объекты.
На биологических объектах, которые совершили космический полёт длительностью более 25 часов, были получены уникальные научные данные о влиянии фактов космического полёта на физиологические, генетические и цитологические системы живых организмов, которые убедили ученных в правильности выбранных направлений в подготовке полёта человека в космическое пространство и наметили конкретные пути осуществления подобного полёта.
1 декабря 1960 г. был запущен четвёртый корабль. Программа его орбитального полёта была выполнена, однако из-за отказа в системе управления работой ТДУ спуск произошёл в нерасчётном районе и СА был подорван. На его борту находились собаки Пчелка и Мушка.
22 декабря 1960 г. был проведён очередной запуск корабля, но при выведении его на орбиту произошла авария ракеты-носителя (разрушение газогенератора ДУ блока Е на 425 с полёта). СА корабля аварийно отделился и нормально приземлился, совершив суборбитальный полёт. На его борту были собаки Комета и Шутка, которые остались в СА из-за отказа катапульты и благодаря этому остались живы в суровых зимних условиях.
К сожалению, сильно отстала разработка катапультируемого кресла с теплозащитным коконом, особенно его экспериментальная отработка в условиях, имитирующих спасение пилота при аварии РН в конце работы 1 ступени. Для ускорения отработки катапультируемого кресла было предложено упростить систему аварийного спасения: высоту аварийного катапультирования ограничить до 4 км, а в случае аварии 1 ступени РН на большой высоте выключить двигатели, сбрасывать головной обтекатель, раскрывать замки крепления СА и космонавт приземлялся по штатной схеме после "естественного" расхождения СА и ступеней РН. Эти предложения были одобрены С.П.Королевым с одним добавлением: задублировать ТДУ. Решение было найдено: использовать в качестве резервного средства спуска естественное торможение корабля земной атмосферой. Гарантированное время существования на орбите не менее двух и не более десяти суток обеспечивалось выбором эллиптической орбиты с низким перигеем и достаточно высоким апогеем. Для дополнительного внутреннего охлаждения СА предлагалось после отделения его от приборного отсека по команде от термодатчиков провести разгерметизацию и использовать специальную систему охлаждения с водой в качестве рабочего тела. Уточненные проектные материалы на доработку корабля, необходимую для первого полёта человека, были выпущены в середине октября 1960 г. и в конце 1960 г. - в начале 1961 г. была изготовлена серия кораблей для лётной отработки в беспилотном варианте.
Эскизный проект космического корабля-спутника 3КА для полёта человека был выпущен в конце июля 1961 г., уже после первого полёта человека.
Первый запуск корабля ЗКА был проведён 9 марта 1961 г. Корабль был укомплектован всеми бортовыми системами, собакой Чернушка и манекеном человека, который в шутку был назван разработчиками "Иван Иванович". Внутри манекена (в грудной полости, полости живота и т.п.) были размещены мыши, морские свинки, микробы и другие биологические объекты в целях изучения влияния радиационного излучения, а внутри СА - семена растений, элементы крови человека и др. Программа полёта была выполнена, аппаратура работала безотказно, СА с собакой нормально приземлился, а манекен катапультировался.
25 марта 1961 г. был запущен корабль ЗКА N2 в той же комплектации с собакой Звездочка. Программа полёта корабля также была выполнена. СА с собакой нормально приземлился. Манекен штатно катапультировался.
Этим пуском была закончена экспериментальная отработка пилотируемого космического корабля "Восток" (ЗКА) в лётных условиях. К моменту окончания лётной отработки КК "Восток" (ЗКА) было произведено более 46 пусков ракеты-носителя Р-7 (I и 2 ступеней ракеты 8К71) и 16 запусков блока Е (III ступень) ракеты-носителя 8К72. Из 16 блоков Е шесть блоков не сработали из-за аварии РН и два блока - из-за аварий самого блока. Из семи кораблей "Восток" (1К и ЗКА) два корабля не вышли на орбиту из-за аварий РН на активном участке траектории и два корабля не полностью выполнили задачи полёта.
Опыт показал также, что полёты собак на кораблях "Восток" происходили с некоторыми сдвигами в их физиологическом состоянии. Симптомы стали проявляться после четвёртого витка полёта. Это заставило планировать первый предстоящий полёт человека в космическое пространства продолжительностью не более одного витка с максимальной автоматизацией режимов управления.
Государственная комиссия приняла решение о возможности полёта человека в космос на корабле "Восток" (ЗКА). Программа пилотируемых космических кораблей "Восток" (ЗКА) включала запуск шести пилотируемых кораблей, в том числе полёт первой женщины и групповые полёты двух пар кораблей.
Весть о полёте Ю.А.Гагарина буквально захватила весь мир. Все средства массовой информации отмечали это выдающееся событие ХХ го столетия.
Началась эра полётов человека в космос. Ежегодно день 12 апреля стал отмечаться как день Космонавтики.
Полёт корабля "Восток" с человеком на борту явился итогом напряженной работы советских ученых, инженеров, врачей и специалистов различных отраслей техники.
6 августа 1961 года был запущен корабль, получивший название "Восток-2", с лётчиком-космонавтом Г.С.Титовым. Полёт продолжался 25 ч. Орбитальный полёт и спуск прошли нормально.
На корабле "Восток-2" была установлена профессиональная репортажная кинокамера "Конвас", доработанная для бортовых съемок. С помощью этой камеры была выполнена 10-минутная съёмка Земли через иллюминаторы корабля. Объекты съёмки выбирал сам космонавт, стремясь получить материал, иллюстрирующий картины, наблюдаемые им во время полёта. Полученная высококачественная съёмка широко демонстрировалась на телевизионном и киноэкранах, была опубликована в центральных газетах и вызвала интерес научной общественности к изучению изображений Земли из космоса.
11 августа 1962 года был запущен корабль "Восток-3" с лётчиком-космонавтом А.Г.Николаевым, а 12 августа 1962 г. - корабль "Восток-4" с лётчиком-космонавтом с П.Р.Поповичем. Запуск двух ракетно-космических комплексов с одной стартовой площадки в течение 2 сут потребовал очень четкой, слаженной работы всех служб космодрома, и в первую очередь испытательной бригады. Орбитальный полёт и спуск кораблей "Восток-3" (94 ч полёта) и "Восток-4" (71 ч полёта) прошли нормально.
В ходе полёта космонавтами проводилась киносъёмка поверхности Земли, программа которой основывалась на анализе изображений, полученных при полёте корабля "Восток-2". Так, А.Г.Николаев вёл съёмку поверхности Земли, а П.Р.Попович снимал линию горизонта и зоны терминатора. Кроме того на борту были установлены кинокамеры для регистрации действий космонавтов во время полёта.
14 июня 1963 г. стартовал корабль "Восток-5" с лётчиком-космонавтом В.Ф.Быковским на борту (полёт 120 ч), а 16 июня 1963 г. - корабль "Восток-6" с первой женщиной-космонавтом В.В.Терешковой (полёт 72 ч). Полёт и спуск кораблей прошли нормально.
В этих полётах, кроме обычной цветной пленки на борт была установлена чёрно-белая пленка. Отснятое на неё изображение горизонта земли были подвергнуты фотометрической обработке с целью получения количественных значений яркости вертикального профиля атмосферы.
24 мая 1972 | 24 мая 1972г. родился Сураев Максим Викторович, летчик-космонавт Роскосмоса, Герой России. М.В.Сураев совершил космический полет на Международной космической станции с 30.09.2009г. по 18.03.2010г. (в составе длительных экспедиций МКС-21/22). Стал первым российским космонавтом, ведущим свой блог во время полёта. Орбитальные заметки Сураев публиковал сайте Федерального космического агентства.
24 мая 1986 | Третий полет в атмосфере аналога орбитального корабля «Буран», оснащенного четырьмя турбореактивными двигателями.
24 мая 1997 | Запущен с помощью российской РН «Протон-К» американский спутник «Телстар-5» для телевизионного и радиовещания.
24 мая исполняется 55 лет (1962) со дня запуска в США (Мыс Канаверал) космического корабля Aurora-7 с астронавтом Малколмом Карпентером (Malcolm Carpenter) на борту.
24 мая исполняется 50 лет (1967) со дня запуска в США (База ВВС США “Ванденберг”) научно-исследовательского спутника Explorer-34.
24 мая исполняется 50 лет (1967) со дня запуска в СССР (космодром Байконур) спутника связи “Молния-1-05”.
24 мая исполняется 45 лет (1972) со дня рождения летчика-космонавта РФ Максима Викторовича Сураева.
24 мая исполняется 20 лет (1997) со дня запуска с космодрома Байконур с помощью российской ракеты-носителя “Протон-К” американского телекоммуникационного спутника Telstar-5.
А.Ж.
Agleam
Станислав Николаевич Славин Космическая битва империй. От Пенемюнде до Плесецка СНОВА НА СЕЛЕНУ, ИЛИ ВОСПОМИНАНИЯ О ЗАБЫТЫХ ПРОЕКТАХ
ВОЗВРАЩЕНИЕ НА ЛУНУ. Собираются ли земляне снова на Луну? Данный вопрос интересует не просто любопытных, но и специалистов. Многие из американских учёных полагают, что не стоило тратить 30 млрд. долларов только для того, чтобы доказать всему миру превосходство американской техники над советской и привезти с Луны несколько центнеров камней. Не утратили своего интереса к Селене и российские учёные, конструкторы, космонавты. И вот какие горизонты начинают прорисовываться в последнее время. Возвращение на Луну, по всей вероятности, будет сопряжено с созданием постоянно действующей лунной базы. Причём если поначалу она, эта база, будет небольшой, то со временем она должна расшириться, стать настоящим полигоном для испытания нового оборудования, предназначенного для обследования других планет, в первую очередь — Марса. При этом, возможно, конструкторы использует какие-то идеи, оставшиеся в архивах.
АЛЬТЕРНАТИВЫ «АПОЛЛОНУ». Например, мало кто ныне знает, что у американцев, кроме программы «Аполлон», существовала ещё и секретная программа «Лунэкс», подготовленная командованием ВВС США.
скрытый текст
Она, в частности, предусматривала два варианта полётов на Луну. Первый, которому командование ВВС США отдавало предпочтение, предполагал достижение Луны методом «прямого выстрела». Говоря иначе, космический корабль доставлялся на Луну, стартуя непосредственно с Земли с помощью мощнейшей ракеты-носителя. Второй вариант предусматривал сборку корабля на околоземной орбите с последующим стартом к Луне. Сам космический корабль должен был состоять из лунного посадочного модуля, лунного стартового модуля и разгонного транспортного средства. Однако в отличие от той схемы, которая некогда была изобретена Ю. Кондратюком и использована американцами в программе «Аполлон», посадочный модуль «Лунэкс» представлял собой крылатый ракетоплан, способный осуществлять манёвры в атмосфере Земли и посадку на обычный аэродром. При этом авторы программы в своей докладной записке, положенной на стол президенту, настоятельно подчёркивали, что «Лунэкс» имеет не только политическое, но и военное значение. В случае ядерного конфликта между СССР и США базу, расположенную на обратной стороне Луны, достать не так-то легко. А вот оттуда по противнику и будет нанесён решающий удар. Для осуществления данной программы её авторы предлагали набрать специальный корпус в 6000 человек. Кроме того, ещё 60000 специалистов будут заниматься материально-технической базой проекта. В докладе ВВС также указывалось, что для реализации планов потребуется создание трёх типов летательных аппаратов. Кроме ракетоплана и стартового лунного модуля, о которых шла речь выше, главную трудность в осуществлении экспедиции составляло создание сверхтяжёлой ракеты-носителя, двигатели которой должны были работать на жидком водороде и кислороде, создавая стартовую тягу не менее 2700 т. Согласно расчётам, затраты на реализацию проекта должны были составить в период с 1962 по 1971 годы порядка 7,5 млрд. долларов. Это было не так много, втрое меньше, чем было затрачено в действительности. Однако явное нежелание отдавать космическую программу в руки «ястребов» из военного ведомства заставило Дж. Кеннеди отклонить программу «Лунэкс». Тем более что у него был выбор. Скажем, идеологи программы «Джемини», в частности, инженер Джеймс Чемберлен из НАСА, предлагали в своё время модернизировать двухместные корабли с таким расчётом, чтобы они могли долететь до Луны. По мнению Чемберлена и его единомышленников программа «Джемини-Кентавр-ЛМ» обошлась бы в 20 раз дешевле программы «Аполлон», стоившей, как известно, 24 млрд. долларов. Правда, экономя на всём, Чемберлен предложил, произвести высадку единственного астронавта на Луну, причём на модуле открытого типа. Говоря совсем уж попросту, тот храбрец в скафандре должен был просто сидеть верхом на баке с топливом, под которым располагался ракетный двигатель. Однако НАСА отвергло этот проект, сочтя его чересчур рискованным. Наконец, и в самом НАСА, кроме осуществлённой программы, вначале рассматривалось и несколько других вариантов. Согласно одному из них, старт к Луне осуществлялся сразу с Земли. Для этого нужна была сверхмощная ракета «Нова», способная вывести на околоземную орбиту 180 т полезной нагрузки, а на траекторию к Луне — 68 т. Однако разработка такой ракеты потребовала бы слишком много времени, а потому проект был забракован, как и ещё полтора десятка других.
СОВЕТСКИЕ ЛУННЫЕ ПРОГРАММЫ. В нашей стране тоже, кроме официальной, существовало несколько «полуподпольных» программ высадки на Луну. Одну из них, например, проталкивал Владимир Челомей. После отставки Хрущёва он тоже попал в опалу, поскольку у него в ОКБ-52 работал сын отставного руководителя советского государства. Возможно, тем самым Челомей хотел хоть как-то реабилитировать себя и своё КБ. Проект УР-700ЛК-700, как и некоторые проекты американцев, предлагал прямой полёт на Луну. Причём поскольку для этого требовалась ракета, в полтора раза превосходящая по мощности уже известную нам Н1, то Челомей брался разработать и её в кратчайшие сроки. Тем более что за основу нового проекта он намеревался взять уже находившуюся в эксплуатации трёхступенчатую ракету УР-500 и оснастить его дополнительными ракетными двигателями. Однако проект не прошёл, несмотря на то что его поддерживал Валентин Глушко, двигателями которого предполагал воспользоваться Челомей. План был очень опасен хотя бы потому, что в случае аварии на старте, как это не раз случалось с Н1, весь космодром превратился бы мёртвую зону на 15–20 лет — настолько ядовитое топливо предполагали использовать в ракете её создатели. Когда В. Мишина сняли с поста главного конструктора и на его место заступил В. Глушко, он тотчас предложил и собственную концепцию полёта на Луну — проект ЛЭК. Лунный экспедиционный корабль (ЛЭК) должен был выводиться непосредственно на траекторию полёта к Луне новым носителем «Вулкан». Конструкторский размах Глушко впечатлял: стартовая масса ракеты должна была составить 3810 т, полная высота — 88 м. По расчётам, она смогла бы выводить на околоземную орбиту груз массой в 200 т, на траекторию следования к Луне — 65 т, для полёта к Венере или Марсу — более 50 т. Однако и этот проект не прошёл. Прежде всего потому, что после полётов американцев и Политбюро ЦК КПСС, и лично сам Генеральный секретарь Л.И. Брежнев потеряли всякий интерес к лунной затее. Все силы, как уже говорилось, решено было переключить на создание долговременных орбитальных станций. Кстати, многие из вышеупомянутых проектов рассматривали полёты на Луну всего лишь как начало действия долговременной программы, которая должна была привести к созданию постоянно действующей лунной базы. А советская экономика, как уже говорилось, просто не потянула бы двойной нагрузки.
Програ́мма «Аполло́н» — программа пилотируемых космических полётов космического агентства США НАСА, принятая в 1961 году с целью осуществления первой пилотируемой высадки на Луну, и завершённая в 1975 году. Президент Джон Ф. Кеннеди сформулировал задачу в своей речи[1] 12 сентября 1961 года, и она была решена 20 июля 1969 года в ходе полёта «Аполлон-11» высадкой Нила Армстронга и Базза Олдрина. Всего по программе «Аполлон» были совершены 6 успешных высадок астронавтов на Луну (последняя — в 1972 году). Эти шесть полётов по программе «Аполлон» на данный момент — единственные за всю историю человечества, когда люди высаживались на другом астрономическом объекте. Программа «Аполлон» и высадка на Луну часто упоминаются как одни из величайших достижений в истории человечества[2][3].
Программа «Аполлон» была третьей программой пилотируемых космических полётов, принятой НАСА. В этой программе использовались космический корабль «Аполлон» и серия ракет-носителей «Сатурн», которые были позднее использованы для программы «Скайлэб» и участвовали в советско-американской программе «Союз — Аполлон». Эти более поздние программы рассматриваются как часть полной программы «Аполлон».
скрытый текст
В ходе выполнения программы произошли две крупные аварии. Первая — пожар во время наземных испытаний на стартовом комплексе (после пожара сгоревший корабль получил название «Аполлон-1»), в результате которого погибли три астронавта — В. Гриссом, Э. Уайт и Р. Чаффи. Вторая произошла во время полёта корабля «Аполлон-13»: в результате взрыва бака с жидким кислородом и выхода из строя двух из трёх батарей топливных элементов высадка на Луну была сорвана, астронавтам с риском для жизни удалось вернуться на Землю.
Программа внесла большой вклад в историю пилотируемой космонавтики. Она остаётся единственной космической программой, в ходе которой были осуществлены пилотируемые полёты за пределы низкой земной орбиты. «Аполлон-8» был первым пилотируемым космическим кораблём, вышедшим на орбиту другого астрономического объекта, а «Аполлон-17» — это последняя на сегодня пилотируемая высадка на Луну.
рограмма «Аполлон» была задумана в начале 1960 года, при администрации Эйзенхауэра, как продолжение американской космической программы «Меркурий». Космический корабль «Меркурий» мог доставить лишь одного астронавта на низкую орбиту вокруг Земли. Новый корабль «Аполлон» был предназначен вывести трёх астронавтов на траекторию к Луне и, возможно, даже совершить посадку на ней. Программа была названа в честь Аполлона, греческого бога света и стрельбы из лука, менеджером НАСА Авраамом Силверстайном. Несмотря на то, что финансирование было значительно ниже необходимого из-за негативного отношения Эйзенхауэра к пилотируемой космонавтике[4], НАСА продолжало разработку программы. В ноябре 1960 года Джон Ф. Кеннеди был избран президентом после избирательной кампании, в которой он пообещал американцам добиться превосходства над Советским Союзом в области исследования космоса и ракетостроения.
12 апреля 1961 года советский космонавт Юрий Гагарин стал первым человеком в космосе, что лишь укрепило опасения американцев в том, что США отстали от Советского Союза на технологическом уровне.
В мае 1961 г. президент США Д. Кеннеди выступил в конгрессе с изложением программы «Аполлон». Намечалось израсходовать на неё 9 млрд долларов в течение первых пяти лет. Конечной целью программы была посадка человека на Луну не позднее 1970 года
25 мая 1931 | Родился Гречко Георгий Михайлович. Летчик-космонавт СССР. Д.ф.-м.н. Дважды Герой Сов. Союза. Выполнил три полета на КК «Союз-17»-«Салют-4» (1975), «Союз-26»-«Салют-6» (1977-1978) и «Союз Т-14»-«Салют-7»-«Союз Т-13» (1985).
25 мая 1949 | Запущена первая геофизическая ракета Р-1А с двумя отделяемыми контейнерами для размещения научно-исследовательской аппаратуры.
25 мая 1961 | Президент США Д. Кеннеди объявил о начале разработки космической системы, обеспечивающей высадку человека на Луну.
25 мая 1967 | Запущен ИСЗ «Молния-1» - первый спутник НПО прикладной механики (г. Красноярск), изготовленный. Первая "Молния-1" изготовленная НПО ПМ, по чертежам ОКБ-1.
25 мая 1969 | Родился Кондратьев Дмитрий Юрьевич. Космонавт Роскосмоса, полковник ВВС Российской Федерации, совершил космический полет на кораблее "Союз-ТМА-20" на МКС. Командир МКС-27
25 мая 1999 | Принят Указ Президента РФ № 651 о преобразовании Российского космического агентства в Российское авиационно-космическое агентство.
26 мая 1898 | Родился Петропавловский Борис Сергеевич. Один из организаторов и руководителей работ по РТ в стране. Начальник ГДЛ. Один из создателей РС для реактивных минометов («Катюш»).
26 мая 1927 | Родился Махотин Николай Дмитриевич. Зам. гл. конструктора НИИ ПМ им. Академика В.И. Кузнецова. Д.т.н. Профессор. Лауреат Гос. премии.
26 мая 1934 | Родился Караштин Владимир Михайлович. Технический руководитель подготовки и пуска РН «Энергия» и МРКК «Энергия-Буран». Специалист по автоматизации прцессов подготовки и пусков РН. Зам. ген. конструктора РКК «Энергия» им. С.П. Королева. Д.т.н. Профессор. Действ. член РАКЦ, Академии метрологии и Международной академии информатизации. Герой Соц. Труда. Почетный гражданин г. Королева.
26 мая 1951 | Родился Мухаммед Ахмед Фарис. Космонавт-исследователь Сирийской Арабской Республики. Выполнил полет на КК «Союз ТМ-3»-«Мир»-«Союз ТМ-2» (1987) совместно с А.С. Викторенко и А.П. Александровым.
26 мая 1977 | Запущен ИСЗ («Космос-912») для исследования природных ресурсов Земли.
26 мая исполняется 40 лет (1977) со дня запуска в СССР (космодром Плесецк) разведывательного спутника "Космос-912" ("Зенит-4М").
26 мая исполняется 40 лет (1977) со дня запуска в США (Мыс Канаверал) телекоммуникационного спутника Intelsat 4A-F4.
26 мая исполняется 30 лет (1987) со дня запуска в СССР (космодром Плесецк) разведывательного спутника "Космос-1847" ("Янтарь-4К1").
26 мая исполняется 5 лет (2012) со дня запуска в Китае (космодром Сичан) телекоммуникационного спутника "Чжунсин-2А".
А.Ж.
Agleam
Станислав Николаевич Славин Космическая битва империй. От Пенемюнде до Плесецка ГЛАВА 1. ПЕРВЫЕ ПУСКИ
Первыми в космос выбрались фантасты. Причём было это ещё во времена античности. Но мы с вами так далеко забираться не будем. И начнём нашу историю с тех времён, когда для осуществления первых полётов уже имелась кое-какая техническая база. Таким временем стал конец XIX – начало XX века.
ВРЕМЯ ФАНТАЗЁРОВ И МЕЧТАТЕЛЕЙ
Как только где-нибудь в компании начинаются разговоры об истоках отечественной космонавтики, тут же всплывают имена Кибальчича, Циолковского, Цандера, Кондратюка… И хотя история, как известно, не терпит сослагательного наклонения, давайте спокойно разберёмся, кто что сделал и кто, напротив, ничего не сделал.
ВОТ ТАКАЯ ПЛАТФОРМА! Когда мне, ещё в детстве, на глаза первый раз попался рассказ о том, как народоволец Кибальчич в 1881 году создавал свой «воздухоплавательный прибор», я был потрясён. Человек с петлёй на шее думал не о завтрашнем дне, когда его повесят, а о послезавтрашнем, когда люди отправятся в космос. Слов нет, жалко талант, погибший в самом расцвете сил. (Хотя, если разбираться по сути, Николаю Кибальчичу при любом режиме полагалось бы достаточно строгое наказание. Представьте себе, что вы завтра прочтёте в газетах: арестован член группы террористов из шести человек, изготовивший взрывное устройство, которое было использовано для покушения на президента. Как вы думаете, что с ним сделают?..)
скрытый текст
Теперь о сути изобретения. Согласно описанию Кибальчича, «воздухоплавательный прибор» имел вид платформы с отверстием в центре. Над ним устанавливалась цилиндрическая «взрывная камера», в которую должны были подаваться «свечки» из прессованного пороха. Для их зажигания и подачи без перерыва автор предлагал сконструировать особые «автоматические механизмы». Но что они должны собой представлять — об этом ни гугу. Нет также ни слова об устройстве герметичной кабины, средствах защиты и безопасности экипажа и т.д. Словом, перед нами типичный «прожект», какими и ныне полным-полны редакционные корзины в любом научно-популярном журнале. Идея Кибальчича даже не сыграла никакой роли, поскольку листки с описанием проекта были подшиты к делу и оказались обнародованными лишь спустя 36 лет — в августе 1917 года. Словно бы специально для того, чтобы большевики могли использовать этот случай как очередной пример для обличения царского режима. Вот, дескать, какого человека угробили…
БЕЗ КОГО НАРОД НЕПОЛНЫЙ… Между тем слышали ли вы, например, о реактивном дирижабле Соковнина, о летательных аппаратах Неждановского, атомной (!) ракете Александра Фёдорова?.. Эти имена у нас почему-то известны куда меньше. А ведь первые двое — Соковнин и Неждановский — были явными предшественниками Кибальчича. Что же касается Фёдорова, то он, по существу, оказался прямым конкурентом К.Э. Циолковского. А знаем мы о них мало и по сей день, наверное, потому, что в советское время было невыгодно пропагандировать идеи капитана первого ранга Николая Михайловича Соковнина — как-никак офицер царской армии. Хотя его конструкция, опубликованная в 1866 году, была проработана куда лучше «воздухоплавательного прибора». Соковнин предлагал взять дирижабль и поставить на него… реактивный двигатель! Причём если поначалу автор предлагал оснастить свой летательный аппарат пороховыми ракетами, то впоследствии додумался и до идеи… турбореактивного двигателя. Другой русский учёный-изобретатель — Сергей Сергеевич Неждановский — впервые пришёл к мысли создания реактивного летательного аппарата в июне 1880 года, о чём свидетельствует запись в его рабочей тетради. Полгода спустя он уже привёл расчёты двух вариантов ракетного двигателя (при давлении пороховых газов в 150 и 200 атмосфер) и прямо писал: «Думаю, что можно и не мешает устроить летательный аппарат. Он сможет носить человека по воздуху по крайней мере в продолжение 5 минут…» В общем, человек уже в то время придумал ранцевый реактивный двигатель, который в натуре был воссоздан лишь в 70-е годы XX века американцами. О жизни ещё одного российского гения — Александра Петровича Фёдорова — и по сей день мало что известно. Однако его труд «Новый принцип воздухоплавания, исключающий атмосферу как опорную среду» был опубликован в 1896 году. И не в заштатной Калуге, а в Петербурге, где был замечен и породил своеобразную лавину работ подражателей. Именно на эту книжку, кстати, опирался и К.Э. Циолковский, который прямо пишет: «В 1896 году я выписал книжку А.П. Фёдорова „Новый принцип воздухоплавания…“. Она мне показалось неясной (так как расчётов никаких не дано). А в таких случаях я принимаюсь за вычисления самостоятельно — с азов. Вот начало моих теоретических изысканий о возможности применения реактивных приборов в космических путешествиях».
РАКЕТНЫЕ ПОЕЗДА ЦИОЛКОВСКОГО. Кстати, в текстах самого Циолковского ясности не намного больше и продраться сквозь частокол его словонагромождений бывает не так-то просто. Ясно одно — Константин Эдуардович либо на свой лад развивал идеи своих предшественников, либо выдвигал нечто совершенно неудобоваримое. У нас, например, долгое время как-то не принято даже упоминать о том, что, кроме всего прочего, Циолковский был активным пропагандистом чистки генофонда человечества, предлагая для этого методы, которые, наверное, произвели бы впечатление на самого Гитлера. О таком Циолковском постарались забыть даже большевики. И мы с вами дальше тоже будем говорить лишь о его космических идеях. Большая часть их относится к общим рассуждениям типа «если попробовать сделать так, то, наверное, получится следующее». Среди выдвинутых им технических идей нашли практическое применение, пожалуй, лишь многоступенчатые ракеты. Да и то ведь он предлагал два варианта: ракетные эскадрильи и поезда. «Эскадрильи», когда ракеты стыкуются в одну шеренгу параллельно одна другой, может быть, когда-то будут использованы для передвижения буксиров в открытом космосе. Что же касается идеи ракетного поезда, то она реализована с точностью до наоборот. Вот как описывает суть дела сам Циолковский: «Дело происходит приблизительно так. Поезд, положим, из пяти ракет скользит по дороге в несколько сот вёрст длиною, поднимаясь на 4–8 вёрст от уровня океана. Когда передняя ракета почти сожжёт своё горючее, она отцепляется от четырёх задних. Эти продолжают двигаться с разбегу (по инерции), передняя же уходит от задних вследствие продолжающегося, хотя и ослабленного взрывания. Управляющий ею направляет её в сторону, не мешая движению оставшихся сцепленными четырёх ракет». В общем, как видите, нет ничего и близкого к современной практике. Ракеты ныне стартуют не горизонтально, по эстакадам, как предлагал Циолковский, а вертикально. И работать начинает именно нижняя ступень (или задний вагон ракетного поезда, по терминологии Циолковского). Кстати, о том, к какой конструкции эта идея Циолковского привела М.К. Тихонравова в проекте ВР-190, мы с вами ещё поговорим при случае. А здесь давайте обратим внимание на такую частность. Представьте себе: по рельсовой эстакаде, постепенно поднимающейся «на 4–8 вёрст над уровнем океана», мчится ракетный поезд. Оператор, сидящий в первом вагоне, отцепляется от напирающего сзади состава и сваливает в сторону. Куда, интересно? И что с ним дальше произойдёт? В бумагах Циолковского нет ответа на этот частный вопрос. Зато есть довольно наивные рассуждения о том, что надо строить побольше ракетопланов, даже если и первые из них будут плохи. «Сами по себе они ценны, т.е. и в одиночку могут служить народам, — пишет Циолковский. — Опыты с несколькими ракетопланами будут производиться, между прочим, как интересные трюки…» Сколько стоят такие «трюки», он, похоже, не отдавал себе отчёта.
ИДЕИ И ДЕЛА ЦАНДЕРА. Фридрих Артурович Цандер, как инженер, был куда грамотнее Циолковского. А потому он из наивных и неверных идей своего предшественника мог иногда выудить нечто ценное. Скажем, он смог объединить достоинства ракетных поездов и эскадрилий Циолковского в одной конструкции. И предложил центральную большую ракету окружать по периметру многими малыми. Посмотрите на первую ступень современной тяжёлой ракеты — чаще всего она устроена именно так; основные двигатели ещё и окружены стартовыми ускорителями. Стремился он и максимально снизить стоимость межпланетных перелётов. А для этого пользоваться, например, бесплатной энергией давления солнечного света на зеркала или экраны. Так что именно Цандер, а не Артур Кларк, как можно ныне прочесть, является основоположником идеи солнечных космических парусников. Кларк лишь красочно распропагандировал эту идею в одном из своих произведений. И хотя Цандера время от времени тоже заносило — чего, например, стоит его утреннее приветствие своим сотрудникам «Вперёд, на Марс!» — он не только мечтал, но и действовал. Добился свидания с В.И. Лениным, смог заинтересовать его космическими разработками и получил содействие в деле организации «Общества изучения межпланетных сообщений» — первой организации в нашей стране, которая от слов перешла к делу. Именно Цандер и его ученики начали в 1928 году проектировать первый реактивный двигатель ОР-1 (аббревиатура составлена из слов «опытный реактивный первый»). А само общество стало предшественником знаменитого ГИРДа — Группы изучения реактивного движения, — где в 30-е годы XX века началась настоящая работа по созданию жидкостных ракетных двигателей.
ТАЙНА КОНДРАТЮКА. Эту тайну мне в своё время открыли не где-нибудь, а в космической цензуре ТАССа, куда я в 70-е годы пришёл визировать статью о малоизвестном тогда Юрии Кондратюке. Материал пришёл «самотёком» от не известного мне автора из Таганрога. Тем не менее чувствовалось, что корреспондент владеет материалом, почерпнув его из не известных мне источников. А в то время существовало такое, достаточно жёсткое правило: если в какой-то статье, заметке упоминалось о космических работах, она подлежала непременному визированию в космической цензуре. Вот там мне эту статью тут же и «зарубили», популярно объяснив, что Юрий Кондратюк — фигура «непечатная» по двум причинам. Во-первых, человек почти всю свою жизнь почему-то прожил по чужим документам (на самом деле его зовут Александр Игнатьевич Шаргей). И, во-вторых, он сгинул в безвестности под Москвой, в ополчении. Но был ли он убит или попал в плен к немцам и со временем стал эмигрантом?.. Этот, безусловно, талантливый человек отказался от приглашения работать в ГИРДе. Как он мог там работать, если даже в Обществе изучения межпланетных сообщений состоял действительным членом сам Ф.Э. Дзержинский? А уж с ГИРДа и других подобных организаций чекисты глаз и вообще не сводили. И они, конечно, мгновенно вывели бы скрывавшегося под чужим именем «врага народа» на чистую воду. Шаргей-Кодратюк всё это отлично понимал и предпочёл всю жизнь строить элеваторы да ветрогенераторы, поклоняясь своей любимой космонавтике издали, предлагал в своих работах любопытные идеи. Их, кстати, хватило, чтобы имя его осталось в истории освоения космоса. Ведь это по схеме Кондратюка американцы высадились на Луну, ведь это он придумал «звёздные зонтики», один из которых ныне лёг в основу проекта «Старвисп», предполагающего посылку «солнечного парусника» к звёздам. …Ну а что касается той статьи, то, вернувшись из космической цензуры, я написал автору, по-видимому, маловразумительное объяснение, почему его работа не годится для печати. Чем, каюсь, обидел очень толкового человека, сотрудника, как впоследствии выяснилось, секретного в ту пору КБ гидросамолётов. (При его участии был вскорости построен первый в мире реактивный гидросамолёт.)
АТОМОЛЁТЫ И РАДИОКОРАБЛИ. Ну, и чтобы закончить разговор об идеях наших соотечественников и перейти непосредственно к их делам, давайте вспомним ещё раз А.П. Фёдорова. Он в 1927 году представил на Выставку межпланетных аппаратов модель и описание атомно-ракетного корабля. Согласно сохранившимся чертежам, корабль этот должен был стартовать непосредственно с земли с помощью крыльев и трёх пропеллеров. В дальнейшем пропеллеры и крылья убирались и вступал в действие ракетный двигатель. Общая длина конструкции — 60 м, диаметр — 8 м, масса — 80 т, а развиваемая скорость — 25 км/с, т.е. выше третьей космической. Атомолёты же пытались строить в 70-х годах прошлого века, и ныне к ним, похоже, собираются вернуться опять. Заодно, кто знает, может быть, будет воплощена в жизнь в нынешнем, XXI веке и идея ещё одного замечательного изобретателя — Николая Алексеевича Рынина. Он, между прочим, ещё в 20-е годы XX века предложил двигать межпланетный корабль с помощью «энергетического луча». Эксперименты же с прототипами капсул, которые приводятся в движение лазерным или микроволновым лучом, начались лишь в конце XX века, продолжаются и поныне…
27 мая 1779 | Родился Засядко Александр Дмитриевич. Русский специалист в области артиллерии и ракетной техники. Генерал-лейтенант. Провел большое число опытных пусков пороховых ракет, достигших дальности полетов до 2300 м.
27 мая 1948 | Родился Волков Александр Александрович. Летчик-космонавт СССР. Герой Сов. Союза. Выполнил три полета на КК «Союз Т-14»-«Салют-7» (1985), «Союз ТМ-7»-«Мир» (1988-1989) и «Союз ТМ-13»-«Мир» (1991-1992).
В начале XX века Германия была своеобразной «Меккой» физиков, химиков и инженеров всего мира. Именно здесь чаше всего выдвигали наиболее сумасшедшие идеи (вспомните хотя бы Эйнштейна) и строились самые совершенные машины. Двигатели Дизеля исправно служат нам и по сей день. Понятно, что немецкие инженеры и изобретатели не обошли вниманием и модную тогда тему освоения воздушного и безвоздушного пространства.
РОЖДЕНИЕ «РАКЕТНОГО ОБЩЕСТВА». Удивительный всё-таки народ немцы! Какое бы они дело ни затевали — «пивной путч» или создание ракетного общества, они никак не могут сделать этого без кружки-другой пенящегося напитка и пары сосисок к нему. Летом 1927 года несколько человек, живших в небольшом немецком городке Бреслау, встретились в задней комнате ресторана. Попили, поели и… создали объединение, члены которого обдумывали бы и распространяли идеи, как послать людей в космос и на другие планеты.
скрытый текст
Поначалу они назвали себя «Обществом межпланетных сообщений» («Verein f"ur Raumschiffahrt»). Но в других странах эта организация стала известной как «Немецкое ракетное общество». Президентом выбрали инженера Иоганна Винклера, а он, в свою очередь, вскоре наладил издание ежемесячного журнала «Ракета» («Die Rakete»), в котором регулярно публиковались наиболее ценные идеи и проекты членов «Общества». Журнал издавался за счёт членских взносов и пожертвований. А поскольку «Общество межпланетных сообщений» росло очень быстро — среди его членов были профессор физики Герман Оберт, лётчик-изобретатель Макс Валье, инженеры Франц фон Гефт, Гвидо фон Пирке, Эйген Зенгер и многие другие люди, с именами которых мы ещё встретимся в этой книге, — то вскоре при «Обществе» был организован и фонд, финансировавший самые оригинальные разработки с целью экспериментальной проверки их работоспособности.
ГЕРМАН ОБЕРТ И ЕГО КОЛЛЕГИ. Этого человека иногда называют «немецким Циолковским». И действительно, в конце 1923 года он так же, как и Константин Эдуардович, выпустил в Мюнхене невзрачную на вид брошюру «Ракета и межпланетное пространство». В этой книжке Герман Оберт, подобно своему русскому коллеге, писал о том, что «современное состояние науки и технических знаний позволяет строить аппараты, которые могут подниматься за пределы земной атмосферы». А дальнейшее усовершенствование этих аппаратов со временем приведёт к тому, что они будут развивать такие скорости, которые позволят им преодолеть силу земного притяжения и вывести на околоземную орбиту не только грузы, но даже людей. Однако была между этими людьми и существенная разница. Если Циолковского мало интересовало, сколько могут стоить его «игрушки», то Оберт с самого начала ставил во главу угла трезвый расчёт. «В определённых условиях изготовление таких аппаратов может стать прибыльным делом», — сообщает он. Кстати сказать, утилитарный подход возымел место даже в издательско-популяризаторской деятельности Оберта. И первая его книга, и вторая — «Пути осуществления космического полёта» переиздавались неоднократно и оказались вполне выгодными коммерчески. В своих трудах Оберт не только подробно рассказывал о том, что было сделано до него, но и выдвигал собственные, довольно ценные идеи. Так, скажем, он предложил идею «воздушного старта», которую пытаются реализовать ныне наши и иностранные конструкторы. А именно — ракеты должны стартовать не с земли, а с высоты в 5500 м и более над уровнем моря, будучи подвешенными к специальным дирижаблям. Причём один из его космических кораблей, получивший название «Модель Е», имел весьма солидные размеры даже по современным меркам. Общая длина ракеты, рассчитанной на двух пассажиров, оценивалась Обертом как «примерно соответствующая высоте четырёхэтажного дома», а её масса — 288 т! Предполагалось, что она будет состоять из двух частей: первая разгонная ступень работала на спирте и жидком кислороде, а вторая, при том же окислителе, использовала жидкий водород. Согласитесь, в 20-е годы прошлого века было предложено вполне современное решение топливной проблемы. Причём в верхней части второй ступени Оберт предлагал разместить «аквариум для земных жителей», т.е. обитаемый отсек с иллюминаторами, позволяющими вести астрономические наблюдения. Чтобы преодолеть земное притяжение, ракета, как показали расчёты Оберта, должна была лететь 332 с при ускорении 30 м/с2 и достичь высоты 1653 км. Возвращение же пассажирской кабины на Землю Оберт планировал посредством парашюта либо при помощи специальных несущих поверхностей и хвостовых стабилизаторов, позволяющих реализовать планирующий спуск. В описаниях его ещё немало деталей и частностей, которые были затем реализованы (или выдуманы заново) современными конструкторами. Так, скажем, Оберт предусмотрел выход в открытый космос. «На летящей ракете при выключенном двигателе опорное ускорение отсутствует и пассажиры могут в специальных костюмах выходить из пассажирской кабины и „парить“ рядом с ракетой, — писал он. — Костюмы должны выдерживать внутреннее давление в 1 атмосферу…» И далее: «Нам кажется непрактичным давать человеку, находящемуся вне ракеты, воздух через шланг из пассажирской кабины, целесообразнее подавать ему сжатый или жидкий воздух из специального баллона». Кроме того, указывает Оберт, человек в скафандре должен быть обязательно связан с ракетой канатом и телефоном. Подумал он также и о шлюзе, «который можно герметически закрывать с обеих сторон». В общем, когда читаешь всё это, кажется, что выход А.А. Леонова был осуществлён по сценарию Оберта. Впрочем, Оберт был не единственным членом ракетного общества, кто хорошо владел пером. В 1924 году популяризацией идеи межпланетных путешествий занялся также мюнхенский литератор и бывший пилот Макс Валье. В своей книге «Полёт в мировое пространство» он, в частности, предложил способ превращения обычных самолётов в космические путём замены двигателей внутреннего сгорания ракетными. Ещё одну книгу на ту же тему издал и Вальтер Гоман, архитектор города Эссена. Он мыслил строительными категориями, а потому описал целую «пороховую башню», с помощью которой и предлагал стартовать в космос.
ПЕРВЫЕ ОПЫТЫ И НЕУДАЧИ. Впрочем, члены «Немецкого ракетного общества» довольно скоро перешли от слов к делу. Несмотря на то что Германия в те годы переживала далеко не лучшие времена, расплачиваясь после проигрыша Первой мировой войны огромными контрибуциями странам-победителям, Максу Валье и его коллегам удалось найти источники финансирования для первых экспериментов по созданию ракет. В частности, им удалось заинтересовать автомобильного магната Фрица фон Опеля, который оплатил эксперименты по созданию «ракетного автомобиля». Испытания его прошли с большим шумом — как в прямом, так и в переносном смысле. Так что фон Опель не прогадал, и реклама его детищу получилась отличная. Однако большой практической ценности автомобили, снабжённые батареями пороховых ракет, не имели. Тогда Валье зашёл с другой стороны и предложил фон Опелю провести ещё и серию опытов с ускорителями для самолётов. И хотя сам Макс Валье вскоре погиб во время испытаний нового ракетного двигателя, его смерть не остановила других. В июне 1928 года на горе Вассеркуппе в Западной Германии был подготовлен к старту самолёт, точнее, планер типа «утка». Он был оснащён ракетными двигателями, созданными на фабрике «Синус», принадлежащей инженеру Фридриху Зандеру, который также состоял членом «Немецкого ракетного общества». Несмотря на тщательную подготовку, первые две попытки поднять в воздух планер закончились неудачей. Сначала лётчику-испытателю Штаммеру вообще не удалось подняться в воздух. Во второй раз планер взлетел, но вскоре из-за неисправности был вынужден приземлиться, пролетев всего около 200 м. Наконец, в третий раз, когда на планер установили два ракетных двигателя на твёрдом топливе с тягой по 20 кг, лётчику удалось пролететь 1,5 км. Причём, как отметил пилот, полёт, длившийся считанные минуты, «был приятен ввиду отсутствия вибраций от вращающегося винта». Но, к сожалению, этот успех оказался единичным. При следующем испытании планер загорелся в воздухе. Пилоту чудом удалось сбить огонь и посадить аппарат. Ремонту он уже не подлежал, и фон Опель заказал новый ракетный планер. Он был готов к лётным испытаниям 30 сентября 1929 года. После нескольких неудачных попыток он всё-таки взлетел и совершил полёт продолжительностью около 10 минут со скоростью около 160 км/час. Однако при посадке он опять-таки загорелся и оказался совершенно непригодным для дальнейших испытаний. Следующая попытка связана с именем Германа Оберта. Успешный литератор опять-таки решил перейти от слов к делу и осенью 1928 года уговорил кинорежиссёра Фрица Ланга и других создателей фантастического фильма «Женщина на Луне» использовать для рекламы демонстрационный запуск настоящей ракеты. Получив деньги, Оберт вместе инженером Рудольфом Небелем и Шершевским (русским эмигрантом) построил ракету «Кегельдюзе». Она представляла собой алюминиевую сигару длиной около 1,8 м. Причём дюзы, через которые вырывались пороховые газы, были расположены не в корме, как обычно, а в носу ракеты. Оберт полагал, что «ракета с носовой тягой» будет более устойчива в полёте. Однако на практике изобретателям так и не удалось добиться устойчивого горения пороховых шашек, и демонстрационный полёт пришлось отложить «до лучших времён».
ЭКСПЕРИМЕНТЫ НА «РАКЕТНОМ ПЛАЦУ». Первые неудачи холодным душем пролились на горячий энтузиазм членов «Немецкого ракетного общества». Напротив, Общество перестроило свои ряды и пошло в новую атаку. На одном из заседаний было решено выкупить оборудование, изготовленное по заказу фирмы «Уфа-фильм» для «лунной ракеты», и продолжить эксперименты. Причём Рудольф Небель предложил построить новую ракету с уже жидкостным двигателем, имевшим ряд преимуществ перед твердотопливным. Вскоре членам Общества удалось связаться с Государственным институтом химии и технологии, директор которого доктор Риттер обещал оказать содействие дальнейшим экспериментам. Ракета «Кегельдюзе» была создана и в назначенный для испытаний день запущена, несмотря на проливной дождь. Кстати, в её запуске принимали самое непосредственное участие молодые члены Общества Клаус Ридель и студент Вернер фон Браун. Довольный увиденным, доктор Риттер выдал Оберту официальный документ, удостоверяющий, что «двигатель „Кегельдюзе“ исправно работал 23 июля 1930 года в течение 90 секунд, израсходовав 6 килограммов жидкого кислорода и 1 килограмм бензина и развив при этом тягу около 7 килограммов». После успеха с «Кегельдюзе» члены Общества взялись за разработку ракеты «Мирак». Испытательный стенд разместили на семейной ферме Риделей неподалёку от саксонского городка Бернштадта. Однако в сентябре 1930 года ракета взорвалась прямо на стенде. К счастью, никто особо не пострадал. А само известие о взрыве наделало столько шума в местной прессе, что на частные пожертвования Небель вскоре смог приобрести участок площадью в 5 квадратных километров в районе Рейникендорфа, пригорода Берлина. Здесь и был 27 сентября 1930 года основан ракетный полигон, который Небель назвал «Ракетенфлюгплатц» («Ракетный аэродром»). Здесь и решено было испытать вторую модель ракеты «Мирак», которая представляла собой увеличенную копию первой ракеты. Однако и она взорвалась весной 1931 года в результате разрыва бака с жидким кислородом. После этого решено было построить третью ракету, учтя предыдущие ошибки. Новый двигатель для неё состоял из двух секций и хорошо работал на стенде, поглощая 160 г жидкого кислорода и бензина за одну секунду, развивая взамен тягу в 32 кг! Ракетчики за сходство формы прозвали его «яйцом». Но пока готовились лётные испытания «яйца», Иоганн Винклер при финансовой поддержке фабриканта Хюккеля построил и запустил ракету HWR-1 с жидкостным двигателем, застолбив таким образом свой приоритет. Правда, ракета Винклера имела в длину всего 60 см и весила 5 кг, а внешне была похожа на коробчатый змей, состоявший из трёх трубчатых баков, частично закрытых алюминиевой обшивкой. Тем не менее после нескольких неудачных пусков она взлетела, едва не достигнув высоты 500 м. Случилось это 14 марта 1931 года. Тем временем настал день испытаний и на «Ракетенфлюгплатц»: 14 мая 1931 года здесь с диким рёвом стартовал «Репульсор-1» — модификация «Мирака». Взлёт получился неудачным: аппарат ударился о крышу соседнего здания, после чего сделал мёртвую петлю и, спикировав, упал на землю с работающим двигателем. Работа над «Репульсором-2» началась тотчас после анализа аварии. Ударными темпами новая модель была подготовлена к запуску уже 23 мая 1931 года. На этот раз «Репульсор» благополучно взлетел, достиг высоты около 60 м, затем перешёл на горизонтальный полёт и перелетел через весь «Ракетенфлюгплатц». Ракетчики потом с трудом нашли его висящим на ветвях большого дерева в 600 м от старта. При этом модель оказалась совершенно разбитой. Следующий «Репульсор» был построен всего за несколько дней и отличался от предыдущих лучшими характеристиками. На испытаниях, проведённых в начале июня, ракета быстро достигла высоты в 450 м. Но тут по неизвестной причине сработал часовой механизм выбрасывания парашюта. Парашют раскрылся, но ракета продолжала лететь, разорвав купол в клочья. Описав огромную дугу, она опять-таки приземлилась за пределами плаца — в том же окрестном парке, где нашёл свой конец «Репульсор-2». В дальнейшем с переменным успехом ракетчики продолжали строить и запускать всё более совершенные модели ракет. Один из таких запусков закончился конфузом. Очередной «Репульсор» порвал свой парашют, врезался в крышу соседнего сарая и поджёг его. И хотя сарай был старым и ничего ценного в нём не хранилось, но он, к несчастью, принадлежал полицейскому участку, находившемуся аккурат напротив плаца. Нагрянула полиция, последовало долгое разбирательство всех обстоятельств дела, закончившееся, впрочем, вполне благополучно. Специально для полицейских было устроен показательный запуск ракеты. Ракетчики также оплатили стоимость старого сарая, взамен получив разрешение продолжать работы. Всего к концу 1933 года в «Ракетенфлюгплатц» было осуществлено 87 пусков ракет и 270 запусков двигателей на стенде. Кто знает, как пошли бы дела дальше, но тут к власти пришёл Гитлер. Небелю пришлось пойти на поклон к нему. Он направил в соответствующие инстанции «Секретный меморандум о дальнобойной ракетной артиллерии». Вскоре было намечено провести показ ракеты Небеля на армейском испытательном полигоне в Куммерсдорфе, близ Берлина. Причём армейские специалисты потребовали, чтобы ракета выбросила красное пламя в вершине траектории. Заказ был в принципе выполнен, хотя «Репульсор» и на сей раз отклонился от вертикального направления. Однако армейских чинов ракета-игрушка не впечатлила. И на полигоне вскоре появились молодые люди в серо-голубой форме — представители «Дойче люфтвахт». Они заявили, что это место передано им в качестве учебного плаца. Не спас ни «Ракетенфлюгплатц», ни само Общество даже спешно предложенный проект «Пилот-ракеты». По проекту она должна была иметь огромные для того времени размеры (высота — 7,62 м) и мощный ракетный двигатель с тягой до 600 кг. В одном отсеке должны были помещаться кабина с пассажиром и топливные баки, а в другом — двигатели и парашют. Предполагалось, что ракета достигнет высоты 1000 м, где будет раскрыт парашют. Первый запуск непилотируемого прототипа ракеты был запланирован на 9 июня 1933 года. Однако и первый, и последующие запуски оказались неудачными. И дальше пошли уже другие. Примерно в то же время в Куммерсдорфе бывший член Общества и бывший студент, а ныне молодой инженер Вернер фон Браун начал работу над проектом, условно обозначенным как А-1.
28 мая 1931 | Родился Степанов Дмитрий Дмитриевич. Ведущий специалист КБ Химмаш им. А.М. Исаева по разработке ДУ космического назначения («Союз», «Прогресс» и др.) Лауреат Гос. премии.
28 мая 1962 | Запущен ИСЗ «Космос-5» (МС2) для исследования радиационной обстановки, полярных сияний, процессов образования ионосферы, фотоэлектронов.
28 мая 1971 | Запущен «Марс-3». Спускаемый аппарат совершил мягкую посадку в южном полушарии Марса.
28 мая исполняется 65 лет (1952) со дня рождения советского и российского инженера Владимира Мкртычовича Геворкяна. В 1977-1987 гг. проходил подготовку к полетам в космос по программе “Алмаз”.
28 мая исполняется 55 лет (1962) со дня запуска в СССР (полигон Капустин Яр) технологического спутника “Космос-5” (2МС № 2).
28 мая исполняется 35 лет (1982) со дня запуска в СССР (космодром Байконур) разведывательного спутника “Космос-1370” (“Янтарь-1КФТ” № 2).
28 мая исполняется 35 лет (1982) со дня запуска в СССР (космодром Плесецк) спутника связи “Молния-1-54”.
28 мая исполняется 30 лет (1987) со дня запуска в СССР (космодром Плесецк) разведывательного спутника “Космос-1848” (“Зенит-8”).
28 мая исполняется 25 лет (1992) со дня запуска в России (космодром Плесецк) разведывательного спутника “Космос-2186” (“Янтарь-4К1”).
28 мая исполняется 15 лет (2002) со дня запуска в СССР (космодром Плесецк) навигационного спутника “Космос-2389” (“Парус”).
А.Ж.
Agleam
Станислав Николаевич Славин Космическая битва империй. От Пенемюнде до Плесецка ГЛАВА 1. ПЕРВЫЕ ПУСКИ
У нас тоже дела шли с переменным успехом. С одной стороны, советская власть всячески обласкивала некоторых деятелей космонавтики — в ноябре 1921 года Совет Народных Комиссаров, например, установил пожизненную и вполне приличную пенсию с пайком для К.Э. Циолковского. С другой стороны, когда ракетчики вышли уже на стадию практических испытаний своих творений, многие из них оказались в лагерях, а то и под расстрелом. Вот как это было…
ПОЛЁТЫ НА БУМАГЕ. Итак, в мае 1924 года у нас, как и у немцев, было организовано своё «Общество изучения межпланетных сообщений». Его члены тут же принялись пропагандировать идеи космонавтики, собирать наиболее интересные разработки по стране. В итоге весной 1927 года в Москве состоялось открытие первой в истории СССР «Выставки моделей и механизмов межпланетных аппаратов». Интерес правительства к космонавтике не остался не замеченным за рубежом. Все сообщения из Страны Советов, касавшиеся космоса и освоения межпланетного пространства, рассматривались, что называется, под лупой. Не обходилось, как водится, и без преувеличений. Так, в английской печати появилось вдруг сообщение о том, что «одиннадцать советских учёных в специальной ракете вылетают на Луну». Основой для такого сообщения, очевидно, стала заметка, опубликованная в нашей печати:
скрытый текст
«На московском аэродроме заканчивается постройка снаряда для межпланетного путешествия. Снаряд имеет сигарообразную форму, длиной 107 метров. Оболочка сделана из огнеупорного легковесного сплава. Внутри — каюта с резервуарами сжатого воздуха. Тут же помещается особый очиститель испорченного воздуха. Хвост снаряда начинён взрывчатой смесью. Полёт будет совершён по принципу ракеты: сила действия равна силе противодействия. Попав в среду притяжения Луны, ракета будет приближаться к ней с ужасной скоростью, и для того, чтобы уменьшить её, путешественники будут делать небольшие взрывы в передней части ракеты». В связи с таким ажиотажем в «Общество изучения межпланетных путешествий» приходили мешки писем с просьбой записать в отряд, как тогда говорили, межпланетчиков.
ТИХОМИРОВ И ГДЛ. На самом же деле о создании межпланетных кораблей было говорить, конечно, ещё очень рано. Только-только группы энтузиастов начинали разрабатывать первые ракетные двигатели. Одна из таких разработок велась в Газодинамической лаборатории, больше известной как ГДЛ. В её основу были положены работы инженера-химика Николая Ивановича Тихомирова, занимавшегося в Москве, в доме № 3 по Тихвинской улице, химическими и пиротехническими экспериментами. Тут же была и слесарно-механическая мастерская. Сам Тихомиров занимался ракетами ещё с 1894 года. И в начале XX века он предложил Морскому министерству проект боевой ракеты, причём в двух вариантах — на твёрдом порохе и жидкой смеси спиртов и нефтепродуктов. Экспертиза его разработок затянулась. Сначала помешала Первая мировая война, потом — революция. Но Тихомиров оказался человеком упорным и в мае 1919 года сделал аналогичное предложение уже управляющему делами Совнаркома Владимиру Бонч-Бруевичу. Новая власть тоже не очень торопилась с экспертизой, но всё же в 1921 году проект «самодвижущейся мины для воды и воздуха» был признан имеющим важное государственное значение. Тихомиров получил какие-то деньги и смог отказаться от ранее применявшегося в ракетах чёрного дымного пороха. На смену ему пришёл стабильно горящий бездымный пироксилиновый порох. В 1925 году Газодинамическую лабораторию, набиравшую всё больше сотрудников, перебазировали в Ленинград.
РУБЕЖ — 100 КИЛОМЕТРОВ. В 1929 году в ГДЛ был организован новый отдел, руководителем которого стал В.П. Глушко. Он стал заниматься разработкой жидкостных реактивных двигателей и создал их более полусотни — от ОРМ-1 по ОРМ-52. Кстати, ОРМ — это аббревиатура слов «Опытный ракетный мотор». Все разработки отдела Глушко перечислить здесь невозможно — получилась бы отдельная книга. А потому скажем коротко. Как и у других ракетчиков, двигатели Глушко получались поначалу довольно капризными. Тем более что он с самого начала стал работать с довольно необычными смесями — четырёхокисью азота (в качестве окислителя) и толуолом. Взрывы и отказы следовали один за другим, однако со временем разработчики накапливали опыт, и к началу 30-х годов двигатели стали работать более-менее устойчиво. Так, скажем, в 1931–1932 годах на двигателе ОРМ-16 группа Глушко провела более 100 огневых стендовых испытаний. А к 1933 году отдел Глушко пришёл с наиболее мощным в то время ЖРД ОРМ-52, который развивал тягу до 300 кг и имел скорость истечения газовой струи 2060 м/с. Двигатель работал на смеси азотной кислоты и керосина и весил всего 14,5 кг. Однако В.П. Глушко не успокоился и на этом. Он поставил перед собой цель: ракета с его двигателем должна первой одолеть рубеж высоты в 100 км. Для этого он предложил проект РЛА-100 («Реактивный летательный аппарат с высотой подъёма 100 километров»). Согласно расчётам, стартовый вес этой ракеты должен был составлять 400 кг, из них на топливо с окислителем приходилось 250 кг. Для успешного полёта требовалось довести тягу двигателя до 3000 кг, и Глушко со своим отделом снова с головой ушёл в работу. Впрочем, проект РЛА-100 в те годы так и остался мечтой. На лётные испытания удалось вывести лишь экспериментальные ракеты РЛА-1, РЛА-2 и РЛА-3, способные осуществить вертикальный взлёт на высоту порядка 4 км. Правда, Глушко тем временем придумал ЭРД — электрический ракетный двигатель. Принцип действия такого двигателя был довольно прост: в камеру сгорания подаётся электропроводящее вещество, через которое проводится мощнейший электрический разряд. При этом вещество или рабочее тело мгновенно испаряется и под большим давлением выбрасывается через сопло наружу, создавая тягу. Идея показалась многим интересной. Над её осуществлением много экспериментировали, но довести её до реализации смогли лишь много десятилетий спустя — в 70-е годы XX века. Теперь электроракетные двигатели всё больше начинают использоваться в качестве манёвровых на аппаратах, работающих на орбите и в межпланетном пространстве. Но создать «Гелиоракетоплан», как предлагал Глушко, пока никому не удалось. Слишком мала тяга такого двигателя.
ТЕМ ВРЕМЕНЕМ В ГИРДЕ… Параллельно с Газодинамической лабораторией над проблемой создания ракет и двигателей для них трудились в общественных группах изучения реактивного движения, известных под названиями МосГИРД и ЛенГИРД. Они были организованы осенью 1931 года по инициативе уже известного нам Фридриха Цандера. В то время он всерьёз работал над проектом ракетоплана РП-1. Его основу составлял бесхвостый планер БИЧ-11, на который планировалось установить ракетный двигатель ОР-2. Поскольку самодеятельным энтузиазмом тут уж было обойтись нельзя, для работы над ракетопланом обе группы ГИРДа были слиты воедино под эгидой Бюро воздушной техники Центрального совета Осоавиахима. У руля новой организации стал сам Ф.А. Цандер, а Технический совет ГИРДа возглавил молодой талантливый инженер — Сергей Королёв. Другие руководящие посты достались также конструктору планера БИЧ-11 Борису Черановскому, известному аэродинамику Владимиру Ветчинкину и авиационному инженеру Михаилу Тихонравову. Бесхвостый планер был выбран специально — реактивная струя не могла спалить хвост. Согласно проекту, ракетоплан РП-1 («Имени XIV годовщины Октября») должен был иметь следующие характеристики: стартовый вес — 470 кг, длина — 3,2 м, размах крыла — 12,5 м, максимальная скорость — 140 км/ч. Сергей Королёв сам выполнял все полётные испытания планера, намереваясь довести продолжительность полёта с работающим двигателем до 7 минут. Однако работы над двигателем всё затягивались. Первые испытания состоялись лишь 18 марта 1933 года, но в ходе их двигатель взорвался, а сам испытательный стенд был полностью разрушен. Затем в течение 1933 года было проведено ещё три испытания двигателя, но он продолжал вести себя капризно. Максимальная продолжительность работы составила всего 35 секунд. И в конце концов гирдовцы были вынуждены отказаться от идеи создания ракетоплана.
УСПЕХИ ТИХОНРАВОВА. Теперь основное внимание сместилось на работу бригады, возглавляемой М.К. Тихонравовым. Здесь занимались в основном ракетами на жидком топливе. Наиболее успешно продвигались работы по ракете ГИРД-09, работавшей на смеси жидкого кислорода и сгущённого бензина. Полностью снаряжённая ракета весила 19 кг, причём треть массы приходилась на топливо. Первые испытания двигателя ракеты ГИРД-09 состоялись на Нахабинском полигоне 8 июля 1933 года. Состоялось два запуска. Причём если при первом пуске двигатель развил тягу в 28 кг, то во втором на 10 кг больше. Оказалось, что во втором случае давление в камере сгорания было на 3 атмосферы выше. Подняв давление ещё, через месяц Тихонравов и его сотрудники достигли уровня тяги в 53 кг. Запуск самой ракеты состоялся 17 августа 1933 года — канун Дня Воздушного флота, который гирдовцы, среди которых было много бывших авиаторов, тоже считали своим праздником. Ракета взлетела на 400 м, а затем повернула к земле. Причиной тому, как показал последующий анализ, послужило повреждение в соединении камеры сгорания с сопловой частью. Возникла боковая сила, которая и завалила ракету. Тем не менее первый запуск сочли успешным — ракета всё-таки взлетела — и тут же принялись готовить второй. «Коллектив ГИРДа должен приложить все усилия для того, чтобы ещё в этом году были достигнуты расчётные данные ракеты и она была сдана на эксплуатацию в Рабоче-Крестьянскую Красную Армию», — писал по этому поводу Сергей Королёв в гирдовской стенгазете. В общем, «птенчик ещё не успел толком опериться», а его уже рядили в армейскую шинель. Но, похоже, торопились напрасно. Вторая ракета, запущенная осенью 1933 года, взорвалась на высоте около 100 м. Почему это случилось, выяснить так и не удалось по причине полного разрушения аппарата. Пришлось всё же провести модернизацию двигателя. И новая ракета, получившая обозначение ГИРД-13, несмотря на свой «несчастливый» номер, совершила полдюжины полётов, достигнув высоты в 1500 м. Это был несомненный успех. Успешные запуски, совершённые одной бригадой, побудили и остальных гирдовцев к более интенсивной работе. Одним из наиболее интересных проектов было создание ракетоплана, над которым начал работу ещё Ф.А. Цандер. Для отработки отдельных узлов будущего ракетоплана в реальных условиях решено было создать ракету ГИРД-X, которая должна была иметь длину 2,2 м и стартовый вес — 29,5 кг. Её двигатель работал на жидком кислороде и этиловом спирте и на стенде развивал тягу 70 кг. Однако при первом пуске ракеты ГИРД-X, который состоялся 25 ноября 1933 года, она достигла высоты всего 80 м. Для ракетоплана этого было маловато…
РОЖДЕНИЕ РНИИ. Тем временем в жизни отечественных ракетчиков произошло одно важное событие. Осенью 1933 года Газодинамическая лаборатория и МосГИРД объединились в единую организацию — Реактивный научно-исследовательский институт (РНИИ). В результате произошли некоторая реорганизация и перестановка кадров. Начальником РНИИ стал Иван Терентьевич Клеймёнов, главным инженером — Георгий Эрихович Лангемак. Сергей Королёв был назначен на должность заместителя начальника института. При этом он получил воинское звание дивизионного инженера. Структура организации заметно стабилизировалась, теперь каждый чётко знал свои обязанности. Это, как ни странно, привело к тому, что у того же Королёва появилось больше свободного времени. И в 1934 году он написал и опубликовал свою первую серьёзную работу — книгу «Ракетный полёт в стратосфере». В ней, в частности, он рассказывал о путях и достижениях мировой ракетной техники, подводил промежуточные итоги и намечал вехи на будущее. Королёв также полагал, что в ближайшем будущем полёт человека на ракете по ряду причин ещё невозможен. Тем не менее ракета, пишет он, «благодаря своим исключительным качествам, т.е. скорости и большому потолку (а значит, и большой дальности полёта), является очень серьёзным оружием. И именно это надо особенно учесть всем интересующимся данной областью, а не беспочвенные пока фантазии о лунных перелётах и рекордах скорости несуществующих ракетных самолётов».
РАКЕТЫ С КРЫЛЬЯМИ. Тем не менее сам Королёв вскорости начинает разработку серии крылатых ракет под индексом «06/1», «06/2» и так далее (в знаменателе назывался порядковый номер), которые, по сути, являлись моделями будущих ракетопланов. Они, как ни странно, понадобились прежде всего для того, чтобы привлечь внимание военных, увидевших в них средство для поражения различных целей как на земле, так и в воздухе. Вообще надо сказать, что этот вид вооружения, считающийся ныне одним из самых грозных, имеет теперь достаточно длинную и довольно сложную, можно сказать, витиеватую историю развития. Крылатые ракеты всё время балансировали между просто ракетами и ракетопланами или космическими самолётами, пока наконец не обрели свою «экологическую нишу» и конструктивную законченность. Между тем Королёв ещё в статье «Крылатые ракеты и применение их для полёта человека» (1935 год) сразу дал довольно чёткое определение: «Крылатая ракета — летательный аппарат, приводимый в движение двигателем прямой реакции и имеющий поверхности, развивающие при полёте в воздухе подъёмную силу». Он имел полное преставление, о чём говорил, поскольку уже 5 мая 1934 года гирдовцами была испытана первая крылатая ракета серии «06/1», разработанная инженером Евгением Щетинковым. Она представляла собой гибрид модели бесхвостого планера с двигателем от ракеты «09». В общем, Королёв и его коллеги снова попытались довести до ума ракетоплан. Однако на испытаниях аппарат пролетел всего около 200 м, и стало понятно, что он нуждается в значительной модернизации. Следующая модель, по виду напоминавшая большую модель самолёта с двухкилевым оперением, имела длину 2,3 м, а размах крыла — 3 м. Полётный вес её доходил до 100 кг и проектная дальность оценивалась в 15 км. Однако сразу же после старта модель описала мёртвую петлю и на глазах своих создателей врезалась в землю. В общем, более-менее нормально полетела лишь четвёртая крылатая ракета — «06/4», впоследствии получившая другое обозначение — «212». Это была уже вполне серьёзная конструкция длиной более 3 м и примерно с таким же размахом крыла. Полётный вес превышал 200 кг, из которых 30 кг отводилось на боевой заряд. Проектная дальность полёта — 50 км. Весной 1937 года изделие «212» представили на испытания, которые и прошли довольно успешно в течение 1937–1938 годов. Наращивая успех, создатели крылатых ракет, кроме изделия «212», которое по современной терминологии можно отнести к классу «земля — земля», вскоре представили ещё крылатые ракеты с индексами «201» и «217». Первая из них была класса «воздух — земля» и предназначалась для подвески на самолёты. Вторая же — ракета «217», — напротив, была класса «земля — воздух», т.е. предназначалась для поражения воздушных целей. Интересно, что ракета «201» (или «301») уже в то время была радиоуправляемой. Аппаратура управления была создана командой под руководством профессора Шорина. Правда, на практике полностью проверить весь набор команд — «вправо», «влево», «выше», «ниже», «взрыв» — оператор не смог: то рулевые машинки заедало, то сама команда не поспевала вовремя. В итоге достаточно надёжно воспринималась лишь одна команда — на дистанционный подрыв боевой части. Аналогичную систему удалось создать и для раскрытия в нужный момент парашюта для спасения ракеты. Королёв остался очень этим доволен и впоследствии не раз использовал подобную схему для возвращения на землю геофизических и прочих ракет научного назначения. Зенитную ракету проекта «217» тоже попытались наводить на цель с помощью телемеханической аппаратуры, разработанной при участии Центральной лаборатории проводной связи (впоследствии — Ленинградский филиал Государственного института телемеханики и связи). Работы эти были согласованы с ВВС и Управлением связи РККА. Причём в ходе работ над зенитной ракетой у сотрудников РНИИ возникла мысль создать не двукрылую, как самолёт, ракету, а четырёхкрылую, поскольку в ходе полёта такая схема отличалась большей манёвренностью. Таким образом, ещё за два года до начала Второй мировой войны в нашей стране были созданы первые образцы довольно совершенного по тем временам ракетного оружия. К сожалению только, поставить их производство на поток не удалось. Но в том уж сотрудники РНИИ меньше всего виноваты. Ведь многие из них вскорости оказались в лагерях, а сама их организация, по существу, разгромлена.
МЕЧТА О ПИЛОТИРУЕМОМ ПОЛЁТЕ. Пока, впрочем, дела обстояли не так уж плохо. Эксперименты с моделями крылатых ракет убедили Королёва и его сподвижников, что они теперь знают, как можно спроектировать и управляемый ракетоплан с человеком на борту. Во всяком случае, именно этой теме был посвящён обстоятельный доклад Сергея Королёва на I Всесоюзной конференции по применению ракетных аппаратов для исследования стратосферы, состоявшейся 2 марта 1935 года в ЦДКА имени Фрунзе. Такой ракетоплан в то время представлялся Сергею Павловичу похожим на самолёт с длинным фюзеляжем, чтобы в нём разместились двигатель, баки с горючим и окислителем, а также с небольшими крыльями, поскольку при высокой скорости движения большие плоскости уже не нужны. Кабина пилота обязательно должна быть герметичной — ведь при полётах на большой высоте и с огромной скоростью человек никак не сможет дышать забортным воздухом. Привёл Королёв в своём докладе и весовые характеристики конструкции. Общий вес аппарата, по его мнению, должен был быть около 2000 кг. Удельное распределение массы должно быть примерно таким: лётчик в скафандре вместе с системой жизнеобеспечения — 5,5%, двигатель — 2,5%, аккумулятор давления — 10%, баки — 10%, сама конструкция — 22%. Всё остальное приходилось на топливо и окислитель. Сама схема полёта представлялась такой. Аппарат подобно самолёту разгоняется по земле и взлетает с помощью отбрасываемых пороховых ускорителей. Затем начинает набор высоты под углом 60 градусов на собственном двигателе. После выработки всего топлива ракета переводится в вертикальный полёт и по инерции достигает высоты 32 км. С этой высоты она пикирует на скорости 600–700 м/с, а затем приземляется, используя подъёмную силу крыльев. Ещё один вариант достижения больших высот С.П. Королёв предлагал достичь с помощью комбинированных схем. «Большая ракета, — пояснял он, — несёт на себе меньшую до высоты, скажем, 5000 метров. Далее эта ракета поднимает ещё более меньшую на высоту 12000 метров, и, наконец, эта третья ракета или четвёртая по счёту уже свободно летит на несколько десятков километров вверх». Выдвинул он и другое предложение: «Возможно, будет выгодным подниматься вверх без крыльев, а для спуска и горизонтального полёта выпускать из корпуса ракеты плоскости, которые развивали бы подъёмную силу». Причём «осуществление первого ракетоплана-лаборатории для постановки ряда научных исследований в настоящее время хотя и трудная, но возможная и необходимая задача, стоящая перед советскими ракетчиками уже в текущем году», заключил оратор своё выступление. А на календаре, напомним, значился всего лишь 1935 год. Однако Королёв не привык откладывать намеченное в долгий ящик. И вскорости действительно начал работать над проектом ракетоплана. Ему помогали такие же энтузиасты, как и он сам, согласившиеся работать сверхурочно. В итоге всего за два месяца эта самодеятельная бригада представила проект двухместного «планерлёта» СК-9 — прототипа будущего ракетоплана. На СК-9 проектировщики собирались проверить правильность некоторых своих решений — ведь компьютерного моделирования в ту пору не существовало. И даже аэродинамические продувки были редкостью. Вскоре планер изготовили на заводе Осоавиахима. Он прошёл все стадии облёта и даже совершил дальний перелёт за буксировщиком из Москвы в Коктебель, показав неплохие результаты. Конструкция была выполнена из дерева, только рули и хвостовая часть фюзеляжа частично обшивались тонкой листовой нержавеющей сталью. Оставалось оснастить СК-9 двигателем и посмотреть, как он поведёт себя в самостоятельном полёте. Слухи о первом успехе этой внеплановой работы по созданию проекта высотного ракетоплана-лаборатории стали известны начальнику РНИИ Ивану Клеймёнову, и в конце 1935 года он разрешил включить её в перспективный план института. Теперь дела пошли ещё быстрее. Уже 2 февраля 1936 года Королёв вместе с инженером Евгением Щетинковым вынес на обсуждение руководства РНИИ эскизный проект будущего ракетоплана, получившего обозначение РП-218 (отдел № 2, тема № 18). В пояснительной записке приводились следующие данные: «Ракетоплан должен нести следующую нагрузку: а) экипаж — 2 человека с парашютами — 160 кг, б) скафандры, с кислородными аппаратами — 2 шт. — 40 кг, всего — 200 кг». Наибольшая высота полёта предполагалась в 25 км; максимальная скорость — до 300 м/сек. Сам взлёт ракетоплана предполагалось осуществлять, либо прицепив его к тяжёлому самолёту-носителю, способному подняться на высоту 8–10 км, либо на буксире за ним, либо непосредственно с земли с помощью стартовых пороховых ускорителей. И сама конструкция ракетоплана рассматривалась в нескольких вариантах, пока в конце концов конструкторы не пришли к такой концепции: стартовый вес аппарата 1600 кг, скорость — 850 км/ч, потолок — 9 км. Разгон должны были осуществить три азотно-кислотно-керосиновых двигателя ОРМ-65 конструкции В. Глушко. Как видите, в ходе работы в зависимости от получаемых результатов менялся и сам первоначальный замысел. Королёв менял и саму конструкцию, и сферу применения аппарата. На первый план постепенно была выдвинута идея использования подобных летательных аппаратов в качестве истребителей-перехватчиков, способных догнать самый скоростной бомбардировщик. Сам Королёв в феврале 1938 года в докладе о развитии исследовательских работ по ракетному самолёту, подготовленном совместно с Щетинковым, писал об этом так. Поскольку разница «в максимальных скоростях современных бомбардировщиков и истребителей настолько мала, что преследование бомбардировщика после манёвра практически нецелесообразно, так как за время преследования бомбардировщик успевает пройти десятки и сотни километров», появилась необходимость постройки истребителя, обладающего очень большой скоростью и особенно скороподъёмностью. «Запас топлива такого истребителя должен обеспечить продолжительность боя в течение 4–5 мин. и дальность полёта в пределах зоны тактической внезапности (т.е. 80–120 км). Ракетный истребитель может удовлетворить этим требованиям», — подчёркивает Королёв. И в том же докладе представил эскизные проекты четырёх новых вариантов экспериментального ракетного самолёта. Однако ни по одному из вариантов работы так и не были доведены до конца. Волна репрессий, набиравшая силу в стране, докатилась и до ракетчиков.
И ТУТ ГРЯНУЛА ГРОЗА… Сначала в 1937 году был арестован и расстрелян «высокий покровитель» ГИРДа и РНИИ, маршал Михаил Тухачевский. Вскоре после него погибли в застенках начальник РНИИ Иван Клеймёнов и главный инженер РНИИ Георгий Лангемак. В марте 1938 года арестовали конструктора двигателей Валентина Глушко. Летом того же года попал в руки чекистов и Сергей Королёв. Обвинение было стандартным. Ему велели сознаться в том, что он «состоял членом антисоветской подпольной контрреволюционной организации и проводил вредительскую политику в области ракетной техники». Далее обвинение конкретизировалось: Королёву, в частности, поставили в вину, что он разрабатывал твердотопливную ракету «217» лишь с целью задержать развитие более важных направлений; что он сознательно препятствовал созданию эффективной системы питания для бортового автопилота ракеты «212»; что он разрабатывал заведомо негодные двигатели. В результате через три месяца после ареста Военная коллегия Верховного суда СССР под председательством Ульриха приговорила конструктора к 10 годам тюремного заключения с поражением в правах на пять лет и конфискацией личного имущества. Правда, работы по вариантам ракетного самолёта после этого не остановились. Ведущим конструктором по «РП-318-1» после ареста Королёва был назначен инженер Щербаков. Ведущим конструктором по двигательной установке стал инженер Арвид Палло. На ракетоплан установили азотно-кислотно-керосиновый двигатель РДА-1-150 конструкции Леонида Душкина. И в феврале 1939 года начались наземные испытания двигательной установки РДА-1-150 в ходе которых было проведено свыше 100 пусков. Тем временем лётчик-испытатель Владимир Фёдоров, которому поручалось пилотирование этой необычной машины, осваивал приёмы пуска и управления двигателем. В январе 1940 года ракетоплан привезли на один из подмосковных аэродромов. Здесь провели последние испытания ЖРД прямо на планере. Специальная комиссия представителей промышленности и научно-исследовательских учреждений признала возможным допустить машину к полёту. И вот 28 февраля 1940 года самолёт-буксировщик Р-5 несколько раз прорулил по взлётному полю, утрамбовывая взлётную дорожку в снегу. Фёдоров занял место в кабине ракетоплана. В 17 часов 28 минут самолёт-буксировщик пошёл на взлёт. На высоте 2800 м ракетоплан РП-318-1 отцепился от буксировщика и Фёдоров включил ракетный двигатель. Наблюдавшие за полётом видели, как за ракетопланом появилось сначала серое облачко от зажигательной шашки, а затем пошёл бурый дым. Двигатель заработал на пусковом режиме. Наконец показалась огненная струя длиной около метра. Ракетоплан стал быстро набирать скорость и перешёл в полёт с набором высоты. «Нарастание скорости от работающего РД и использование её для набора высоты у меня, как у лётчика, оставило очень приятное ощущение, — писал потом Фёдоров в своём отчёте. — После выключения спуск происходил нормально. Во время спуска был произведён ряд глубоких спиралей, боевых разворотов на скоростях от 100 до 165 км/ч. Расчёт и посадка — нормальные». В марте 1940 года состоялось ещё два успешных полёта. Они показали, что, в принципе, ракетные двигатели в СССР достигли такого уровня, что их вполне можно было ставить на ракетопланы, осваивать серийный выпуск таких машин. Но это в теории. На практике же всё получилось совсем иначе…
29 мая исполняется 10 лет (2007) со дня запуска с космодрома Байконур) с помощью российской ракеты-носителя "Союз-ФГ" четырех американских спутников связи типа Globalstar.
29 мая исполняется 5 лет (2012) со дня запуска в Китае (космодром Тайюань) спутника ДЗЗ "Яогань-13".
А.Ж.
Agleam
Станислав Николаевич Славин Космическая битва империй. От Пенемюнде до Плесецка ГЛАВА 1. ПЕРВЫЕ ПУСКИ
ЭПОПЕЯ «БИ». Арест Королёва отбросил его с передовых позиций в создании ракетных самолётов. Дальше пошли другие. В частности, летом 1940 года РНИИ посетили два инженера из ОКБ В.Ф. Болховитинова. Это были начальник бригады механизмов Александр Яковлевич Березняк и начальник бригады двигателей Алексей Михайлович Исаев. Здесь они познакомились с конструктором Л.С. Душкиным, который как раз работал над жидкостно-реактивным двигателем для стартового ускорителя реактивного истребителя «302», создававшегося тогда в институте. Вероятно, Душкин сумел заинтересовать двух инженеров-самолётостроителей идеей, оставшейся в наследство от Королёва. И они по своей инициативе начали разработку эскизного проекта истребителя нового типа, который должен был развить скорость более 800 км/ч. Предполагалось, что он будет оснащён двигателем Д-1А (конструкции Леонида Душкина и Владимира Штоколова) и станет одним из первых в мире действительно летающих ракетопланов.
скрытый текст
Начавшаяся война не приостановила, а, напротив, подстегнула интенсивность работ над «БИ» — такое обозначение получил новый истребитель по первых буквам фамилий конструкторов. Гитлеровцы рвались к Москве, и скоро наша столица стала подвергаться первым бомбёжкам. Вот тут бы как раз и пригодились скоростные и высотные перехватчики. Свои соображения авторы проекта изложили в письме на имя Верховного главнокомандующего, которое, кроме них, подписали конструктор двигателя Л.С. Душкин, директор завода В.Ф. Болховитинов и главный инженер РНИИ А.Г. Костиков. Вскоре все заинтересованные лица были вызваны в Кремль для личного доклада. Предложение инженеров было одобрено и постановлением Государственного комитета обороны, подписанным Сталиным, бюро Болховитинова поручалось в кратчайший срок (35 дней) создать истребитель-перехватчик, а НИИ-3 (так к тому времени назывался РНИИ) — двигатель РДА-1-1100 для этого самолёта. ОКБ Болховитинова было переведено «на казарменное положение», работали, не выходя с завода. За 35 суток всё-таки не успели, но 1 сентября, с опозданием лишь на пять дней, первый экземпляр самолёта был отправлен на испытания. Правда, на аэродроме были прежде всего начаты пробежки и подлеты на буксире, поскольку силовая установка ещё дорабатывалась. За полтора десятка полётов аппарата в планерном варианте на буксире за самолётом Пе-2 лётчик Борис Кудрин выявил все основные лётные характеристики БИ на малых скоростях. Испытания подтвердили, что все аэродинамические данные самолёта, характеристики устойчивости и управляемости соответствуют расчётным. Более того, Кудрин и другие лётчики, управлявшие планером БИ, доказали, что после выключения ракетного двигателя перехватчик с высоты 3000–4000 м способен вернуться на свой или другой ближайший аэродром в режиме планирования. Однако, как ни торопились наши рабочие и конструкторы, немцы их опередили — их войска вплотную подошли к Москве. И 16 октября 1941 года, в самый разгар гитлеровского наступления на столицу, КБ и завод Болховитинова были эвакуированы на Урал. Здесь, в небольшом посёлке Билимбай (60 км западнее Свердловска) в декабре 1941 года «переселенцам» была выделена территория старого литейного завода для дальнейшей работы. Вместо заболевшего лётчика-испытателя Кудрина командование ВВС прикомандировало к КБ капитана Григория Бахчиванджи, который почти сразу едва не погиб на одном из наземных испытаний. А именно 20 февраля 1942 года при запуске двигателя на испытательном стенде произошёл взрыв. Пострадали двое: пилота швырнуло головой на приборную доску, а находившегося рядом с кабиной Арвида Палло обдало струёй азотной кислоты. Обоих отправили в больницу. К счастью, Бахчиванджи отделался лёгким сотрясением мозга, а глаза Палло спасли очки, хотя ожоги на лице остались у него на всю жизнь. В марте стенд был восстановлен, наземные испытания продолжались. Затем 25 апреля самолёт был переправлен из Билимбая на аэродром НИИ ВВС в Кольцово, где 30 апреля провели два последних контрольных запуска двигателя на земле. Самолёт был готов к первому полёту. Он состоялся 15 мая 1942 года и продолжался чуть более 3 минут. По воспоминаниям очевидцев, взлетел БИ-1 стремительно. В полёте Бахчиванджи сумел совершить лишь пару манёвров, как топливо кончилось, и пришлось заходить на посадку с уже неработающим двигателем. Она получилась жёсткой. Одна стойка шасси подломилась, колесо отскочило и покатилось по аэродрому. Несмотря на это, конструкторы были очень довольны. Ведь самописцы зафиксировали максимальную высоту полёта 840 метров, скорость — 400 км/ч, скороподъёмность — 23 м/с — весьма неплохие показатели для того времени. Поскольку планер БИ-1 был к тому времени уже основательно изъеден кислотой, ремонтировать самолёт не стали, а выкатили на аэродром два новых экземпляра самолёта, получившие соответственно индексы БИ-2 и БИ-3. На них и стали проводить дальнейшие испытания. Одновременно было принято решение начать постройку небольшой серии самолётов БИ-ВС для их войсковых испытаний. От опытных самолётов БИ-ВС отличались вооружением: в дополнение к двум пушкам под фюзеляжем по продольной оси самолёта перед кабиной лётчика устанавливалась бомбовая кассета, закрытая обтекателем. Впрочем, с закладкой серийной партии, похоже, поторопились. Второй полёт опытного самолёта БИ состоялся лишь 10 января 1943 года — более полугода понадобилось на устранение дефектов двигателей, приведение их в рабочее состояние. Затем в короткий срок было выполнено четыре полёта: три лётчиком Бахчиванджи и один (12 января) лётчиком-испытателем Константином Груздевым, на самолёте которого перед посадкой оторвалась одна лыжа. Сам пилот прокомментировал свои ощущения так: «И быстро, и страшно… Как чёрт на метле». А Бахчиванджи как-то сказал в тесном кругу знакомых: «Этот самолёт меня убьёт». Тем не менее испытания продолжались. Они закончились седьмым полётом, состоявшимся 27 марта 1943 года. По наблюдениям с земли, поначалу, вплоть до конца работы двигателя на 78-й секунде, всё шло нормально. Однако после окончания работы двигателя самолёт опустил нос, вошёл в пикирование и врезался в землю. Бахчиванджи погиб. Только в 1973 году, через 30 лет после гибели, ему было присвоено звание Героя Советского Союза. Впоследствии при продувках модели самолёта в аэродинамической трубе было установлено, что причиной катастрофы мог стать флаттер. Суть этого явления состоит в том, что при больших скоростях крылья самолёта с дозвуковым профилем не выдерживают нагрузки, начинают резко вибрировать, полёт становится неуправляемым. После гибели Бахчиванджи недостроенные самолёты БИ-ВС были демонтированы, но испытания опытных образцов всё ещё продолжались. В одном из них, проходившем в январе 1945 года, по возвращении КБ в Москву, лётчик Борис Кудрин тоже едва не погиб из-за сильной внезапной вибрации хвостового оперения. Стало очевидно, что запустить БИ в серию так и не удастся. Работы над этой машиной были прекращены.
ДРУГИЕ ПОПЫТКИ. К тому времени до наших разработчиков стали доходить слухи, что немцы ставят на свои самолёты не ракетные, а воздушно-реактивные двигатели, эксплуатировать которые несравненно проще. Это подстегнуло тех наших конструкторов, которые вынашивали планы создания подобных самолётов ещё до войны. Так, в том же РНИИ в 1940 году были начаты работы по проектированию истребителя с необычной силовой установкой, состоявшей из одного разгонного ЖРД и двух прямоточных воздушно-реактивных двигателей. Сконструировала эти прямоточные воздушно-реактивные двигатели (ПВРД) группа под руководством талантливого конструктора Юрия Александровича Победоносцева. Первую действующую модель они создали ещё в апреле 1933 года, когда назывались третьей бригадой ГИРДа. Причём, поскольку прямоточные двигатели начинают работать только на очень большой скорости, когда воздух, входящий в горючую смесь, сжимается вследствие напора встречного потока воздуха, исследователи нашли весьма оригинальный способ испытаний своих моделей. Миниатюрный воздушно-реактивный двигатель вставляли вместо боевой части в артиллерийский снаряд и выстреливали его из пушки. В полёте двигатель включался и развивал тягу, величину которой определяли по прибавке дальности у снаряда с двигателем по сравнению с обычным. В общем, когда стало понятно, что создать ракетоплан БИ быстро не удастся, ставку сделали на проект «302». Для его реализации А.Г. Костиков был назначен главным конструктором ОКБ-55 и директором опытного завода. Начальником ОКБ стал авиаконструктор М.Р. Бисноват. К весне 1943 года опять-таки выявилось, что двигателисты не могут довести в срок ПВРД конструкции инженера Зуева. ЖРД конструкции Душкина Д-1А-1100 также ещё не был готов. Пришлось опять-таки ограничиться лётными испытаниями планера, а до создания настоящего самолёта дело так и не дошло. Ещё один проект истребителя-перехватчика разрабатывал Р.Л. Бартини (Роберто Орос ди Бартини) — итальянский барон-коммунист, переехавший на постоянное местожительство в СССР. В 1937 году он был арестован по «делу Тухачевского» и оказался в «шарашке» или, говоря иначе, Центральном конструкторском бюро № 29 (ЦКБ-29) НКВД. Здесь в начале 1942 года, Бартини и получил персональное задание Л. Берия. Конструктор предложил два варианта, причём один из них — Р-114, истребитель-перехватчик с четырьмя РД-1 конструкции Глушко — должен был развивать невиданную для 1942 года скорость — более 2000 км/ч! Однако и этот проект не был доведён до стадии практической реализации. Не удалось создать и свой самолёт-перехватчик «РП» С.П. Королёву, которому в 1939 году Особое совещание НКВД изменило статью приговора, а заодно и срок — с 10 лет до двух лет. Его вернули с Колымы и он попал в ту же «шарашку» ЦКБ-29, где работал в группе Андрея Туполева над проектом бомбардировщика «103» (Ту-2). Параллельно Королёв попытался вернуться к прерванной арестом работе над ракетопланом с ЖРД. Однако всё опять-таки упёрлось в отсутствие достаточно надёжного и мощного двигателя. Единственное, чего удалось добиться Королёву практически, так это оснастить ракетными ускорителями конструкции В.П. Глушко пикирующий бомбардировщик Пе-2. Самолёт после этого получил возможность забираться на такую высоту, что истребители противника его уже не доставали. Однако сколько-нибудь широкого распространения и эта конструкция не получила. Были также попытки оснастить ракетными ускорителями истребители Ла-5 и Ла-7, чтобы они могли перехватывать высотные немецкие самолёты-разведчики, идущие к нашим городам. Но тут война повернула на Запад, наша авиация стала господствовать в воздухе, и необходимость в таких специализированных перехватчиках отпала. Правда, в 1945 году лётные испытания всё-таки прошёл самолёт Як-3, который при включённом ракетном ускорителе прибавлял сразу свыше 180 км/ч. Своеобразным признанием успехов Королёва и Глушко стало также участие самолёта Ла-120Р с ракетными ускорителями в воздушном параде, состоявшемся 18 августа 1946 года в Тушине. Но это всё опять-таки были экспериментальные машины.
30 мая 1934 | Родился Леонов Алексей Архипович. Летчик-космонавт СССР. К.т.н. Дважды Герой Сов. Союза. Выполнил два полета на КК «Восход-2» (1965) и «Союз-19»-«Аполлон» (1975). Первым в мире вышел в открытое космическое пространство. Лауреат Гос. премии.
30 мая 2007 | РБ «Фрегат» вывел на ОИСЗ спутники «Глобалстар». Осуществлен кластерный запуск четырех телекоммуникационных КА «Глобалстар». Аппараты выведены на заданные орбиты.
Agleam
Станислав Николаевич Славин Космическая битва империй. От Пенемюнде до Плесецка ГЛАВА 1. ПЕРВЫЕ ПУСКИ
На заключительном этапе Второй мировой войны и после её окончания наши конструкторы получили возможность познакомиться с последними достижениями своих противников. То, что они увидели и узнали, в некоторых случаях их попросту ошеломило. Оказалось, что за 30–40-е годы немцы во многих областях ракетостроения, создания реактивных самолётов ушли далеко вперёд.
ИГРА ПОШЛА ВСЕРЬЁЗ. В тот момент, когда по велению новой власти был закрыт «Ракетенфлюгплатц», у немецких ракетчиков появился свой ангел-спаситель по фамилии Дорнбергер. Побывав однажды на запусках ракет, он понял, что они при соответствующей доработке могут стать прекрасным оружием. Дорнбергер добился, чтобы в начале 30-х годов на артиллерийском полигоне в Куммерсдорфе, была создана новая испытательная станция — «Куммерсдорф—Запад». Её начальником был назначен сам Дорнбергер, получивший к тому времени звание полковника. Первым штатским служащим станции стал Вернер фон Браун, вторым — способный и талантливый механик Генрих Грюнов. В ноябре 1932 года к ним присоединился и специалист по ракетным двигателям Вальтер Ридель.
скрытый текст
Они-то и продолжили работы, начатые на «Ракетенфлюгплатце». На станции «Куммерсдорф—Запад» был опробован испытательный стенд, на котором в декабре 1932 года и был установлен очередной ракетный двигатель. Первый блин, как водится, вышел комом — двигатель тут же взорвался. И потом ещё целый год ракетчиков преследовали неудачи, изредка перемежаемые днями удачных пусков. Однако к 1933 году разработчики набили себе шишек столько, что пришли к заключению: они готовы приступить к созданию полноразмерной ракеты. Условно она была названа «Агрегат-1» («Agregat-1»), или А-1. Согласно проекту, стартовый вес ракеты А-1 составлял 150 кг. Соответственно этому был разработан и двигатель. В процессе его доводки тяга его возросла до 1000 кг. Понятное дело, для такого двигателя была нужна и новая ракета с более вместительными баками. А для её испытания понадобился и новый полигон, поскольку на старом «подросшие» ракеты испытывать было уже опасно для окружающих. В декабре 1934 года две новые ракеты типа А-2 и их создатели переехали на новый полигон, размещавшийся на острове Боркум в Северном море. Обе ракеты поднялись на высоту 2000 м. Следующая ракета была названа А-3. Однако к тому времени выяснилось, что погода в Северном море далеко не часто бывает благоприятна для запусков ракет, и полигон снова пришлось переносить. Теперь он разместился на остров Узедом в Балтийском море, неподалёку от устья реки Пене. К этому времени уже был спроектирован, построен, испытан и окончательно доработан новый двигатель с тягой в 1500 кг. Так что когда в марте 1936 года работу ракетчиков приехал проверить представитель Генштаба вермахта генерал Фрич, было что ему показать. Он остался доволен увиденным, и разработчики получили новые ассигнования. А в апреле 1936 года состоялось совещание, результатом которого явилось решение создать новую испытательную станцию в районе местечка Пенемюнде. Фактически там было создано даже две испытательные станции. Представители сухопутных войск получили в своё распоряжение лесистую часть восточнее озера Кельпин — её назвали «Пенемюнде—Восток». Представители ВВС облюбовали себе пологий участок местности к северу от озера, где можно было построить аэродром, эта часть получила название «Пенемюнде—Запад». Одновременно со строительством исследовательского центра в Пенемюнде близилась к завершению и работа над ракетой А-3. Она имела высоту 6,5 м и диаметр 70 см. Стартовый вес ракеты составлял 750 кг, а её двигатель развивал тягу 1500 кг, работая на жидком кислороде и спирте. Испытательные запуски А-3 были проведены осенью 1937 года. Хотя все три ракеты благополучно одолели запланированную дистанцию, в цель ни одна из них не попала. Расследование показало, что ни система наведения, ни газовые рули не оправдали возлагавшихся на них надежд. Пришлось их дорабатывать. Тем не менее Вернер фон Браун и Вальтер Ридель не собирались останавливаться на достигнутом. Они начали создавать гораздо большую ракету А-4 с дальностью полёта в 260 км и скоростью порядка 1600 м/с. Весить эта громадина при полной заправке должна была уже 12 т, что требовало двигателя с тягой как минимум в 25 т. Боевой заряд такой ракеты превосходил по мощности большую авиабомбу. Пока для этой ракеты разрабатывался новый двигатель достаточной мощности, были начаты испытания модифицированной ракеты А-3 с усовершенствованной системой управления. Она получила обозначение А-5. Первая ракета этой серии была запущена осенью 1938 года, но только через год, когда уже шла война с Польшей, её удалось довести до полной кондиции. Ракеты показали себя настолько надёжными, что некоторые удавалось запускать даже по несколько раз, приводя их в порядок после спуска на парашюте и новой заправки. Успех этой программы открыл дорогу в небо «Большой ракете» — той самой А-4, которую позднее стали именовать ракетой Фау-2 — оружием возмездия.
ПРОГРАММА «ФАУ». Первые образцы А-4 были готовы к лету 1942 года. В Европе уже вовсю бушевала Вторая мировая война, и Гитлер надеялся, что новое оружие внесёт свой вклад в быстрый и окончательный разгром всех его врагов. Ведь носовая часть ракеты имела боевую головку с зарядом весом около 1 т. Запуск А-4 производился со стартового стола, который представлял собой массивное стальное кольцо, укреплённое на четырёх стойках. На стоявшей вертикально ракете сначала срабатывало пиротехническое устройство запуска, зажигавшее смесь спирта и кислорода, самотёком поступавших в камеру сгорания. Это была предварительная ступень пуска, обеспечивавшая тягу в 7 т. Если двигатель функционировал без перебоев, тут же включался парогазогенератор и начинал работать турбонасос, который за 3 секунды резко увеличивал давление в баках. Соответственно возрастало истечение спирта и кислорода, тяга возрастала до 27 т, и ракета стартовала. Через 25 секунд она преодолевала звуковой барьер, а на 54-й секунде А-4 ложилась на боевой курс. Впрочем, первые пуски А-4, начавшиеся в июне 1942 года, показали, что ракета ещё «сырая». Она то и дело сходила с курса и падала в море. Но после соответствующей доработки систем управления в одном из пусков дальность полёта ракеты составила 190 км. Это был несомненный успех, по достоинству оценённый членами комиссии по оружию дальнего действия, посетивший Пенемюнде 26 мая 1943 года. Параллельно с программой А-4, начиная с 1942 года на станции «Пенемюнде—Запад» велась разработка ещё одной системы оружия дальнего действия под названием Fi-103 («Fieseler»). Позднее стараниями Министерства пропаганды Геббельса это оружие получило название самолёт-снаряд Фау-1 (V-1 от немецкого слова «Vergeltungswaffe» — «Оружие возмездия»). Самолёт-снаряд конструкции немецкого инженера Ф. Госслау был своеобразной воздушной торпедой. После пуска он удерживался с помощью автопилота на заданном курсе и определённой высоте. По истечении определённого срока срабатывал таймер, система управления отключалась — и самолёт-бомба падал вниз, неся на борту 1000 кг взрывчатки. Длина Фау-1 составляла 7,3 м. В полёте самолёт-снаряд поддерживали крылья размахом в 5,4 м. А в движение он приводился пульсирующим воздушно-реактивным двигателем, установленным в задней части фюзеляжа. Такие двигатели As014, производившиеся фирмой «Аргус», представляли собой стальные трубы, открытые с задней части и закрытые спереди пластинчатыми пружинными клапанами, открывавшимися под давлением встречного потока воздуха. Когда воздух, открыв клапаны решётки, входил в трубу, здесь создавалось повышенное давление. Одновременно сюда же впрыскивалось топливо; происходила вспышка, в результате которой расширившиеся газы действовали на клапаны, закрывая их, и создавали импульс тяги, выбрасываясь назад через реактивное сопло. После этого в камере сгорания снова создавалось пониженное давление и забортный воздух опять открывал клапаны; начинался новый цикл работы двигателя. Поскольку пульсирующий воздушно-реактивный двигатель обязательно требует предварительного разгона до скорости минимум 240 км/ч, пуск Фау-1 с земли осуществлялся специальной катапультой. Таким образом, членам прибывшей на Пенемюнде Комиссии по оружию дальнего действия предстояло сделать выбор в пользу того или иного оружия — Fi-103 и А-4. Для этого перед ними были продемонстрированы обе системы в действии. Две ракеты А-4 успешно стартовали и пролетели 260 км. Один самолёт-снаряд Fi-103 взлетел, но разбился почти сразу же после взлёта. Второй даже не смог стартовать. И всё же комиссия решила рекомендовать в серийное производство обе системы, мотивировав это тем, что самолёт-снаряд проще в обслуживании при запуске, чем А-4. В условиях войны это немаловажный фактор. О результатах инспекции было доложено Гитлеру. Ему показали фильм об испытаниях, а также модели ракеты и средств её транспортировки — специального прицепа «видальвагена» и самоходного лафета «Мейлервагена». Фюрер остался доволен увиденным, но потребовал от конструкторов увеличить вес боевой части и ракеты и самолёта-снаряда до 10 т. Однако дальнейшему совершенствованию оружия дальнего действия помешали союзники. В ночь на 18 августа 1943 года они нанесли сокрушительный удар по Пенемюнде. Свыше 300 тяжёлых бомбардировщиков сбросили более 1500 т фугасных и огромное количество зажигательных бомб на испытательные стенды, производственные цеха и прочие сооружения. Начисто были выведены из строя электростанция и завод по производству жидкого кислорода, погибли 735 сотрудников полигона. Среди них оказались главный инженер полигона и главный разработчик двигателей. Темпы производства и модернизации ракет были резко снижены. Многое пришлось восстанавливать заново. А потому лишь через год, в июне 1944 года в Лондоне было получено донесение о том, что на французское побережье Ла-Манша доставлены немецкие управляемые снаряды. Английские лётчики сообщали, что вокруг двух пусковых установок замечена большая активность противника. И под утро 13 июня над наблюдательным пунктом в Кенте был замечен странный самолёт, издававший резкий свистящий звук и испускавший яркий свет из хвостовой части. Через 18 минут самолёт-снаряд грохнулся на землю в Суонскоуме, образовав в результате взрыва огромную воронку. В течение последующего часа ещё три таких же самолёта-снаряда упали в Какфилде, Бетнал-Грине и в Плэтте. Правда, потери в результате этих взрывов оказались сравнительно невелики — в Бетнал-Грине были убиты 6 и ранено 9 человек. Но был разрушен железнодорожный мост, и население изрядно напугано применением невиданного оружия. Так начался «Роботблиц» — война механизмов.
АТАКА РОБОТОВ. Всего в ходе этой войны на Англию было выпущено свыше 8000 самолётов-снарядов Фау-1. Однако из этого количества лишь около 2500 достигли района целей. Остальные были уничтожены истребителями английской ПВО или зенитной артиллерией, разбились об аэростаты заграждения или просто не долетели до цели из-за технических отказов. Тем не менее даже этого оказалось достаточно, чтобы уничтожить на территории Англии 24491 жилое здание, ещё 52293 постройки сделать непригодными для жилья. При бомбардировках погибли также 5864 человека, а 17197 были тяжело ранены. В сентябре 1944 года вступили в войну и ракеты «Фау-2». Причём первые две были выпущены не по Лондону, а по Парижу. Одна из них не долетела до цели, но другая разорвалась в городе. Проверив таким образом боевую эффективность нового оружия, немцы перенесли огонь на Лондон. Начиная с 8 сентября 1944 года немцы эпизодически атаковали Лондон и другие районы Великобритании. «Ракетное наступление» немцев на Англию закончилось лишь 27 марта 1945 года в 16 часов 45 минут, когда ракета с № 1115 упала в районе Орпингтона, в графстве Кент. Всего за семь месяцев немцы выпустили в направлении Лондона по меньшей мере 1300 и по Нориджу около 40 ракет «Фау-2». Из них около 500 упало в пределах лондонского района обороны, но ни одна не взорвалась в черте Нориджа. В Лондоне от ракет погибли 2511 человек, а 5869 человек были тяжело ранены. В других районах потери составили 213 человек убитыми и 598 тяжело раненными.{1}
РАКЕТА «РЕЙНБОТЕ». Помимо самолёта-снаряда Фау-1 и баллистической ракеты Фау-2, в «Роботблице» была использована первая серийная многоступенчатая ракета «Рейнботе», разработанная фирмой «Рейнметалл-Борзиг». Она имела длину свыше 11 м и, по существу, состояла из трёх ракет, последовательно состыкованных друг с другом. В качестве пусковой направляющей использовалась стрела «Мейлервагена». Ускоритель и все три ступени работали на твёрдом топливе — дигликольдинитрате. Когда двигатель нижней ступени прекращал работать, воспламенялась специальная смесь пороха и нитроглицерина, которая воспламеняла твёрдое топливо следующей ступени, которая в этот момент своими газами отбрасывала предыдущую ступень в сторону. Максимальная дальность действия ракеты «Рейнботе» оставалась сравнительно небольшой — всего 220 км, она несла сравнительно небольшой боевой заряд — всего 40 кг. Однако эти ракеты были просты в обслуживании, могли транспортироваться прямо к линии фронта. Впрочем, ни ракеты «Рейнботе», ни Фау-1, ни Фау-2 массовой паники, как на то надеялся Гитлер и его приближённые, среди населения Англии и других стран не вызвали.
«КОСМИЧЕСКАЯ» ПУШКА. Не поправил положения и проект Фау-3, предусматривавший строительство сверхдальнобойной «космической» пушки конструкции барона Гвидо фон Пирке. Он предложил построить орудие с боковыми наклонными камерами, внутри которых размещаются заряды, при подрыве придающие снаряду дополнительные импульс и ускорение. Согласно архивным данным, орудие, проходившее по документам нацистов под обозначением «Hochdruckpumpe», или V-3, должно было иметь калибр 150 мм и расчётную дальность стрельбы 165 км. Ствол общей длиной 140 м перевозился по частям и монтировался на бетонном основании стационарной огневой позиции. Снаряд имел длину 2,5 м, весил 140 кг и по форме напоминал ракету. Прототип орудия калибром 20 мм был изготовлен в апреле 1943 года и уже в мае с успехом демонстрировался на одном из испытательных полигонов в Польше. И хотя говорить о точности стрельбы здесь не приходилось, фюрер и его приближённые полагали, что Фау-3 вкупе с предыдущими образцами «оружия возмездия» можно использовать в качестве инструмента террора. Был дан приказ срочно изготовить 50 таких орудий, которые предполагалось разместить прежде всего на побережье Франции, близ Кале. Строительство первой пушки Фау-3 началось в сентябре 1943 года и близилось к завершению. Однако при налёте авиации союзников 6 июля 1944 года несколько бомб попало в шахту ствола, и конструкция была разрушена. А к концу августа, перед лицом наступления союзников, нацисты вынуждены были окончательно отказаться от планов обстрела Англии из сверхдальнобойных пушек. А недостроенный комплекс на побережье Франции был взорван британцами 9 мая 1945 года.
ПИЛОТИРУЕМЫЕ «ФАУ». Третий рейх трещал уже по всем швам. Но, как известно, утопающий хватается и за соломинку. Разработчики Фау-1, понимая, что самолёт-снаряд в его изначальном виде способен попасть лишь в очень крупную цель, например город, предложили для лучшего наведения использовать пилотируемую модификацию Fi-103. Говорят, одним из первых эту идею поддержал «диверсант № 1» третьего рейха Отто Скорцени, который тут же объявил набор в «отряд военных космонавтов». К марту 1944 года в отряде уже числилось 80 пилотов, которые должны были пройти подготовку и осуществить полёт на модифицированном Fi-103. Причём, в отличие от японцев, использовавших для пилотирования самолётов-бомб лётчиков-камикадзе, немцы решили применить более гуманный вариант. Fi-103 с пилотом в кабине подвешивался к бомбардировщику He-111. Тот взлетал, набирал высоту и выходил на исходный рубеж. Здесь самолёт-снаряд отцеплялся. Пилот включал собственный двигатель, направлял аппарат к Ла-Маншу и в виду английских берегов выпрыгивал с парашютом, предварительно нацелив свой аппарат на какой-либо объект побережья. По идее, приводнившегося пилота должны были подбирать подлодки, специально барражировавшие в заданном районе. Конечно, риск невозвращения пилота с такого боевого задания был весьма велик, однако война есть война… В кратчайшие сроки были построены четыре различных пилотируемых самолёта-снаряда Fi-103, получивших название «Рейхенберг». Один предназначался для аэродинамических испытаний, другой — двухместный — для тренировок пилота с инструктором, третий — учебный одноместный, оборудованный двигателем и посадочной лыжей, и, наконец, четвёртый оснащался боевым зарядом, но шасси за ненадобностью не имел. Вскоре начались и лётные испытания бездвигательных модификаций «Рейхенберг I» и «Рейхенберг II». Выглядело это так. Бомбардировщик поднимал самолёт-снаряд на высоту в 300–400 м; затем пилот отсоединял свой аппарат от носителя и заходил на посадку. Однако при первых же полётах начались многочисленные ЧП: пилоты не успевали сориентироваться в полёте, промахивались мимо посадочной полосы и шли на вынужденную посадку за пределами аэродрома. Что, естественно, кончалось печально как для аппаратов, так и для самих пилотов. Программа оказалась под угрозой закрытия ещё до начала фактической реализации. И тогда на выручку пришла личный пилот Гитлера, знаменитая лётчица Ханна Райч, уже поднимавшая в небо экспериментальные машины с реактивными двигателями. На «Рейхенберге III» ей удалось выполнить десять успешных испытательных полётов. Однако до боевого применения пилотируемых самолётов-снарядов дело так и не дошло. Третий рейх капитулировал быстрее, чем была закончена программа испытаний.
АТАКА НА НЬЮ-ЙОРК? Ещё более интересна и загадочна судьба проекта А-9/А-10, проходившего, как говорят, при непосредственном участии Вернера фон Брауна. Продолжая программу совершенствования своих ракет, он в конце войны разработал проект двухступенчатой ракеты, состоявшей из ракеты А-9 (верхняя ступень) и ракеты-носителя А-10 со стартовым весом около 75 т и суммарной тягой двигателей в 180 т. Общая длина комплекса составляла 29 м, максимально достижимая высота полёта — 180 км, а дальность — 4800 км. То есть, говоря попросту, теоретически ракета могла долететь до США и обрушить свой боевой заряд, например, на Нью-Йорк. Правда, история системы А-9/А-10 до сих пор вызывает горячие споры. Одни утверждают, что было изготовлено только два или три макетных образца ракеты А-9, а ускоритель А-10 так и остался на бумаге. Другие же говорят о том, что межконтинентальная ракета была доведена до «железа» и было построено несколько экспериментальных образцов. А коли так, получается, гитлеровцы теоретически могли атаковать Нью-Йорк. Почему же тогда они этого не сделали? Полагают, что их подвела точность наведения. Фюрер предполагал обставить бомбардировку Нью-Йорка с некоторой театральностью. Сначала, дескать, немецкое радио объявит всему миру, что в такой-то день и час крупнейший город США будет атакован. А потом, точно в назначенный срок, ракета грохнется прямо на верхушку небоскрёба «Эмпайр Билдинг», самого высокого здания в мире на тот период. В городе — паника, в стране — шок… Правительство США заключает сепаратный мир с Германией, выходя, таким образом, из войны. Лишившись столь могущественного союзника, англичане и русские уже не смогут столь же успешно продолжать наступление… План бомбардировки США получил кодовое название «Эльстер». Однако когда специалисты стали рассматривать его детально, выяснилось, что навигационные средства того времени не давали возможности точно нацелить самолёт-снаряд именно на «Эмпайр Билдинг». Это и для современных баллистических ракет достаточно сложная задача. А в то время специалисты по наведению давали гарантию попадания лишь в круг диаметром не менее 8 км. Такая точность Гитлера не устраивала. При этом пропадал весь пропагандистский эффект данной операции. Тогда и было решено использовать опыт Ханны Райч по пилотированию самолёта-снаряда. А чтобы наведение оказалось более точным, на верхушке небоскрёба специальные агенты должны были установить радиомаяк. И вот глухой ночью 30 ноября 1944 года за борт всплывшей у американских берегов немецкой субмарины была спущена резиновая шлюпка, в которую уселись два специально подготовленных агента — Джек Миллер (он же Эрих Гимпель) и Эдвард Грин (он же Уильям Колпаг). Они должны были высадиться и, пользуясь тщательно заготовленной легендой, хорошими документами и большой суммой денег, внедриться в обслуживающий персонал «Эмпайр Билдинг». В назначенный срок именно они должны были установить и включить на крыше небоскрёба радиомаяк… Однако хотя агенты и добрались до Нью-Йорка, но прогорели при попытке внедриться в персонал небоскрёба. Одному из служащих показалось подозрительным рвение новоявленных кандидатов, и он сообщил о них в ФБР. В Германии же довольно долгое время о провале агентов не ведали, поскольку ФБР затеяло с третьим рейхом радиоигру, показывавшую, что операция развивается по плану. Однако спешно подготовленный к старту комплекс А-9/А-10 взорвался на старте. А на подготовку новой ракеты времени не оставалось — фронт неумолимо приближался к Берлину, а космодром Пенемюнде подвергался непрестанным бомбардировкам…
КОСМОНАВТЫ ТРЕТЬЕГО РЕЙХА. Так гласит одна версия этой истории. Но существует и другая. Согласно ей, получается, что 24 января 1945 года состоялся второй запуск комплекса А-9/А-10. На сей раз он вроде бы прошёл удачно. Однако то ли пилот Рудольф Шрёдер не смог как следует нацелить самолёт-снаряд, то ли по какой-то технической причине тот не долетел до Нью-Йорка и рухнул в море. Сам Шрёдер, тем не менее, говорят, уцелел и действительно был подобран подводной лодкой. После войны волею судеб он оказался на территории ГДР. И когда в 1961 году в космос полетел первый человек, не выдержал и сделал публичное заявление. Дескать, он, Шрёдер, побывал в космосе ещё в 1945 году. Однако вместо того, чтобы восхититься героем, его тут же «подхватили под белы ручки» и упекли в психушку, где он и сгинул… Согласно третьей версии, немцы произвели около 48 пусков системы А-9/А-10, причём в 1944 году на старте и в полёте взорвалось 16 образцов. Но некоторые из стартов прошли удачно. И одна из ракет даже вышла на орбиту, где трое космонавтов пробыли в анабиозе 45 лет и приземлились, точнее приводнились в Атлантику лишь 2 апреля 1991 года и были выловлены катером американской береговой охраны. Эта история в разных вариациях обошла страницы многих изданий. И лишь немногие обратили внимание, что опубликована она была аккурат накануне Дня дураков. На самом же деле полигон Пенемюнде был занят 5 мая 1945 года войсками советского 2-го Белорусского фронта под командованием маршала Рокоссовского. Причём подразделения майора Анатолия Вавилова получили специальный приказ о максимальной сохранности оставшегося на полигоне оборудования. Правда, сами немецкие конструкторы и проектировщики эвакуировались в Баварию ещё до прихода русских и провели там несколько тревожных недель, пока младший брат Вернера фон Брауна Магнус не нашёл представителей американского командования, которым ракетчики тотчас и сдались. Сами американские войска в это время захватили подземный ракетный завод, расположенный близ Нидерзаксверфена — на территории, которая по соглашению должна была стать русской зоной оккупации. Однако к тому времени, когда союзные офицеры приступили к исполнению необходимых формальностей передачи завода русским, около 300 товарных вагонов, гружённых оборудованием и деталями ракет Фау-2, уже находились на пути в Западное полушарие. Так началась охота за трофеями, подробнее о которой мы поговорим в следующей главе.
31 мая 1903 | Опубликована первая часть книги К.Э. Циолковского «Исследование мировых пространств реактивными приборами», положившая начало научной космонавтике.
31 мая 1975 | Создано Европейское Космическое Агентство.
31 мая 1990 | Запущен стыковочно-технологический модуль «Кристалл» для опытно-промышленного производства полупроводниковых и других материалов в составе ОС "Мир".
31 мая исполняется 80 лет (1937) со дня рождения советского военного инженера Владислава Ивановича Гуляева. В 1963-1968 гг. проходил подготовку к полетам в космос.
31 мая исполняется 50 лет (1967) со дня запуска в США (База ВВС США “Ванденберг”) с помощью ракеты-носителя Thor-Agena-D девяти спутников военного назначения.
31 мая исполняется 40 лет (1977) со дня запуска в СССР (космодром Байконур) разведывательного спутника “Космос-914” (“Зенит-2М”).
31 мая исполняется 10 лет (2007) со дня запуска в Китае (космодром Сичан) телекоммуникационного спутника “Синосат-3”.
А.Ж.
Agleam
Станислав Николаевич Славин Космическая битва империй. От Пенемюнде до Плесецка ГЛАВА 1. ПЕРВЫЕ ПУСКИ
Историки техники вообще, и в особенности техники военной, давно уже подметили, что изделия конструкторов разных стран частенько бывают похожи друг на друга, как родные братья. Отчасти это происходит потому, что конструкторам приходится решать сходные задачи, а стало быть, получать и одинаковые ответы. Кроме того, всегда, во все времена активно работала и работает военная разведка, предоставляя своим конструкторам лучшие образцы чужого творчества. В общем, так или иначе, но в Германии, как и в России, тоже пережили период увлечения космопланами.
ПРОЕКТЫ «ХЕЙНКЕЛЯ».
скрытый текст
В то время как Вернер фон Браун и его коллеги создавали боевые ракеты, конструкторы люфтваффе, кроме Фау-1, создали немало интересных проектов летательных аппаратов как с воздушно-реактивными, так и ракетными двигателями. Например, ещё в начале 30-х годов XX века фирмой «Хейнкель» был построен экспериментальный самолёт He-112. Машина предназначалась только для изучения принципа реактивного движения, а потому её характеристики особо не впечатляли. Собственная скорость самолёта составляла 300 км/ч и увеличивалась до 400 при включении реактивной тяги. Попытка увеличить скорость привела к тому, что в одном из полётов He-112 разбился, развив скорость 458 км/ч. Конструкторам «Хейнкеля» пришлось отказаться от ракетного двигателя А-1, не имевшего регулировки тяги, и попробовать заменить его двигателем TP-1 (конструкция Гельмута Вальтера), работавшим на перекиси водорода. Попытка оказалась удачной, тем более что специально для самолётчиков был создан TP-2 с регулятором тяги. Это позволило конструктору Гансу Регнеру и его команде в конце 1937 года приступить к созданию He-176 — небольшого самолёта с предельно «зализанными» аэродинамическими формами. Кроме хорошо продуманного внешнего вида, самолёт имел ещё немало новшеств. Так, скажем, передняя часть фюзеляжа представляла собой сбрасываемую в случае аварии кабину — подобные только-только начинают внедрять на сверхскоростных самолётах. Первый полёт этого ракетоплана состоялся 20 июня 1939 года и продлился 50 секунд. Однако несмотря на все старания инженеров фирмы «Хейнкель», He-176 так и не удалось разогнать выше скорости в 346 км/ч при проектной в 750 км/ч. В ходе войны инженеры «Хейнкеля» не раз возвращались к идее создания ракетного самолёта на базе истребителя He-162. Однако ни один из этих проектов так и не был доведён до серийного выпуска.
«БЕСХВОСТКИ» ЛИППИША. Как и наши конструкторы, их немецкие коллеги «переболели» и ракетопланами, создаваемыми по схеме «бесхвостка». Для этого при Институте исследований в области планеризма была создана специальная конструкторская группа под руководством Александра Липпиша. Они спроектировали, а завод «Хейнкель» изготовил два экземпляра машины, получившей обозначение DFS-39. Однако испытания этой машины не принесли ожидаемых результатов. Тогда модель «бесхвостой» продули в Гёттингенской аэродинамической трубе. Эксперименты показали, что устойчивость ракетоплана значительно увеличится, если использовать скошенные назад крылья с нулевым углом атаки. Новая машина была названа DFS-194. Однако из-за задержки поставки двигателей Вальтера самолёт пришлось оснастить поршневым двигателем воздушного охлаждения с толкающим винтом, размещённым в задней части фюзеляжа. В таком виде машина прошла ряд лётных испытаний, но до серии так и не дошла. Тогда разозлённый проволочками как со стороны Вальтера, так и со стороны «Хейнкеля» Липпиш решил переметнуться к Мессершмитту, который в итоге и получил контракт Министерства авиации на создание нового ракетного самолёта. Так на свет появился DFS-346, — самолёт-разведчик, который, по идее, должен был втрое превысить скорость звука и достичь высоты 35 км! И это, заметьте, ещё в 1944 году. Для достижения намеченной цели экспериментальный DFS-346 оснастили двухкамерным ракетным двигателем «Walter HWK 109-509C» тягой в 2 т. Да и сам самолёт во многом напоминал ракету длиной 12 м, с размахом крыла 9 м. Пилот должен был управлять им лёжа на животе в герметично отделяемой кабине. В качестве посадочного шасси использовалась лыжа, а поднимать аппарат в воздух должен был либо самолёт-носитель, либо он взлетал с помощью катапульты со специальной тележки. Однако довести этот проект немцы уже не успели. Единственный экземпляр DFS-346 был уничтожен в апреле 1945 года.
КРЫЛЬЯ «МЕССЕРШМИТТА». А вот ракетоплану DFS-194 или Me-163 повезло несколько больше. Эту машину с размахом крыла 10,6 м, длиной фюзеляжа 6,4 м и взлётным весом 2,4 т успели не только построить, но и испытать. Лётные испытания проводил знаменитый планерист, чемпион мира 1937 года капитан Хейни Дитмар, ранее уже поднимавший несколько аппаратов конструкции Липпиша. Первый раз он взлетел 3 июня 1940 года. И затем летал ещё несколько раз, постепенно наращивая скорость, пока не достиг показателя 547 км/ч. В немалой степени успеху способствовал усовершенствованный ракетный двигатель «Walter HWK R.II.203», тягу которого теперь можно было регулировать в пределах от 150 до 750 кг. Самолётом заинтересовались представители люфтваффе и специально для них было построено ещё четыре экспериментальные машины. Лётные испытания в безмоторном режиме проводил опять-таки Дитмар, но дважды при посадке промахивался мимо полосы, поскольку отсутствие закрылков сделало ракетоплан трудноуправляемым. Тем не менее Me-163 V4 — такое наименование получила эта модификация — был признан хорошим. И летом 1941 года было сделано 6 опытных самолётов, которые уже оснастили ракетными двигателями HWK с тягой 750 кг. На одном из них в августе 1941 года Дитмар поставил мировой рекорд скорости, достигнув 900 км/ч. Потом он достиг и 1004 км/ч в горизонтальном полёте, но чуть не разбился, поскольку самолёт перестал слушаться управления и вошёл в пике. Однако лётчику удалось сбросить скорость, овладеть управлением и благополучно приземлиться. Впрочем, рекорды рекордами, но война продолжалась, и ей нужны были боевые машины. А истребитель, расходовавший запас топлива всего за несколько минут, назвать боевым было трудно. Тем не менее в 1943 году было создано секретное подразделение «Erprobundskommando 16» («Ekdo 16»), к которому стали прикомандировывать наиболее подготовленных пилотов. Их стали готовить к полётам на новом самолёте, получившем к тому времени официальное наименование «Messerschmitt Me 163 Komet» («Комета»). Летать на нём оказалось весьма непросто. Самолёт стремительно стартовал и менее чем за минуту скрывался из виду; и лишь дымный шлейф позволял понять, куда делся самолёт. Однако и на сам полёт пилоту отводилось 5–6, во всяком случае, не более 10 минут. За это время он должен был отыскать цель, атаковать её, развернуться и зайти на посадку с уже пустыми баками на скорости порядка 220 км/ч. Любая ошибка пилотирования могла стать последней в жизни пилота, поскольку возможности уйти на второй круг у него не было. Пришлось дорабатывать самолёт, идя на компромиссы. В конце концов, после переделок и усовершенствований на свет появился, по существу, другой самолёт, получивший обозначение Me-163D. У него был более длинный (на 0,85 м) фюзеляж, вмещавший больше топлива. Дополнительные баки были размещены и в крыльях Сбрасываемая тележка и выдвижная лыжа были заменены классическим шасси, убиравшимся после взлёта. Вооружение Me-163D составили две пушки калибром 30 миллиметров, размещённые в крыльях. Весной 1944 года начались испытания. Но вскоре выяснилось, что фирма Мессершмитта уже просто не имеет необходимого количества специалистов, чтобы довести Me-163D до серийного производства. В результате поступило распоряжение перевести работы на завод фирмы «Юнкерс» в Дессау. Под руководством профессора Генриха Хертеля ракетоплан несколько перепроектировали, после чего он был назван Ju-248. Самолёт получил более удобный каплевидный фонарь с хорошим обзором, неподвижные предкрылки были заменены на автоматические, а площадь закрылков для лучшей управляемости при посадке увеличили. Для защиты пилота поставили бронеплиты, ещё увеличили запас топлива и боекомплект. Но война уже стремительно приближалась к концу, так что взлететь и этому самолёту было не суждено. Единственный построенный прототип Me-263 V1, а также недостроенный двухместный учебный вариант Me-163S, достались нашим трофейщикам вместе с другими экспериментальными новинками. Мы не будем рассказывать обо всех подробно, а остановим своё внимание на одной конструкции, которая, хотя и не была построена, заинтересовала наших специалистов, пожалуй, больше других.
БОМБАРДИРОВЩИК ЗЕНГЕРА. Известный конструктор советской ракетной техники, член-корреспондент РАН Борис Евсеевич Черток как-то припомнил такой случай. Когда в конце Второй мировой войны ряд советских конструкторов, среди которых были С.П. Королёв, сам Б.Е. Черток и другие, были командированы в Германию, среди прочего на свалке нашим специалистам удалось обнаружить и отчёт, выпущенный в 1944 году весьма ограниченным тиражом (100 экземпляров) под грифом «Совершенно секретно». В работе, озаглавленной «Дальний бомбардировщик с ракетным двигателем», её авторы — Э. Зенгер и И. Бредт — на основе номограмм и графиков показывали, что с предлагаемым ими жидкостным ракетным двигателем тягой в 100 т возможен полёт на высотах 50–300 км со скоростями 20000–30000 км/ч и дальностью полёта 20000–40000 км! В отчёте были также подробно описаны физико-химические процессы сгорания топлива при высоких давлениях и температурах, энергетические свойства топлива, включая эмульсии лёгких металлов в углеводородах; предложена схема замкнутой прямоточной паросиловой установки в качестве системы, охлаждающей камеру сгорания и приводящей в действие турбонасосный агрегат. Имя австрийского инженера Эйгена Зенгера уже было известно нашим специалистам. Он начал карьеру специалиста-ракетчика ещё до войны с серии испытаний ракетных двигателей в лабораториях Венского университета. В то время он работал главным образом с одной моделью — сферической камерой сгорания диаметром около 50 мм. Сопло двигателя было необычайно длинным (25 см), причём диаметр среза сопла равнялся диаметру камеры сгорания. Камера сгорания и примыкающая к ней часть сопла были снабжены рубашкой охлаждения, в которую под большим давлением подавалось топливо. Оно выполняло две функции: охлаждало камеру сгорания и компенсировало давление, создаваемое в ней продуктами сгорания. Время работы двигателей Зенгера было необычно большим. Испытание продолжительностью 15 минут являлось для него вполне нормальным. Двигатели развивали тягу порядка 25 кг, при этом скорость истечения составляла, как правило, 2000–3500 м/сек. Зенгер ещё тогда был уверен — и дальнейшее развитие ракетной техники подтвердило правильность его взглядов, — что проблемы создания более крупных ракетных двигателей практически вполне разрешимы. И тут надо, наверное, сказать, что Зенгер потряс своим проектом не только советских, но и американских исследователей. Никто из них и понятия не имел о самолёте, имеющем скорость в 10–20 раз превышающую скорость звука. В отчёте же подробно описывалась не только аэродинамика такого полёта, но и все особенности конструкции, динамика её взлёта и посадки. Особо тщательно — видимо, чтобы заинтересовать военных — были проработаны проблемы бомбометания с учётом огромной скорости бомбы, сбрасываемой с такого самолёта задолго до подхода к цели. Интересно, что уже тогда, в начале 40-х годов, Зенгер и Бредт показали, что для космического самолёта старт без вспомогательных средств вряд ли возможен. Космический самолёт должен был стартовать при помощи катапульты. Авторы писали: «Взлёт осуществляется при помощи мощного ракетного устройства, связанного с землёй и работающего в течение примерно 11 секунд. Разогнавшись до скорости 500 м/с, самолёт отрывается от земли и на полной мощности двигателя набирает высоту от 50 до 150 км по траектории, которая вначале наклонена к горизонту под углом 30°, а затем становится всё более и более пологой… Продолжительность подъёма составляет от 4 до 8 минут. В течение этого времени, как правило, расходуется весь запас горючего… В конце восходящей ветви траектории ракетный двигатель останавливается, и самолёт продолжает свой полёт благодаря запасённой кинетической и потенциальной энергии путём своеобразного планирования по волнообразной траектории с затухающей амплитудой… В заранее рассчитанный момент бомбы сбрасываются с самолёта. Самолёт, описывая большую дугу, возвращается на свой аэродром или на другую посадочную площадку, бомбы, летящие в первоначальном направлении, обрушиваются на цель… Такая тактика делает нападение совершенно не зависящим от времени суток и погоды над целью и лишает неприятеля всякой возможности противодействовать нападению… Соединение из ста ракетных бомбардировщиков способно в течение нескольких дней подвергнуть полному разрушению площади, доходящие до размеров мировых столиц с пригородами, расположенные в любом месте поверхности земного шара». Общий взлётный вес конструкции бомбардировщика составлял 100 т, из них 10 т — вес бомб. За счёт уменьшения дальности полёта вес бомбовой нагрузки мог быть увеличен и до 30 т. Таким образом, ещё в разгар Второй мировой войны специалисты Третьего рейха предлагали бомбардировщик, применение которого (да ещё в сочетании с атомной бомбой) могло повернуть ход истории. Но почему же на его исполнение не были брошены все силы немецкой индустрии? Причин тому несколько. Во-первых, когда нацистская Германия напала на СССР, успех первых месяцев войны показался немцам настолько многообещающим, что Гитлер приказал прекратить разработку всех футуристических проектов. Когда же выяснилось, что военные действия затягиваются, в конфликт втянулись и США, Гитлер спохватился. И приказал разработать план бомбардировки Нью-Йорка и Вашингтона. Тут, казалось бы, самое время вспомнить о самолёте Зенгера. И о нём вспомнили: тому свидетельство секретный отчёт. Однако в ракетных кругах проект Зенгера был воспринят весьма насторожённо: его осуществление могло помешать программе создания ракеты Фау-2 и другим ракетным программам. И воспользовавшись тем, что речь тут шла всё-таки о самолёте, ракетчики спихнули проект чинам люфтваффе. Ну а там посчитали, что такой проект потребует не менее 4–5 лет напряжённой работы. До него ли сейчас? Да и вообще Зенгер с Бредтом были чужаками среди авиаторов… В общем, проект потихоньку спустили на тормозах и постарались о нём не напоминать начальству. Но насколько он всё же реален? В этом и попытались разобраться наши специалисты, командированные в Германию. Прилетевший в июне 1945 года в Берлин из Москвы заместитель генерального конструктора нашего ракетного самолёта БИ-2 В.Ф. Болховитинова профессор МАИ Генрих Наумович Абрамович, познакомившись с трудом Зенгера, сказал, что такое обилие газокинетических, аэродинамических и газоплазменных проблем требует глубокой научной проработки. И до конструкторов дело дойдёт, дай бог, лет через десять. Но и он оказался чрезмерным оптимистом. Ныне мы можем сказать, что предложение Зенгера опередило время по крайней мере на 25 лет. Первый космический самолёт «Спейс Шаттл» полетел впервые только в 1981 году. Но он стартовал вертикально, как вторая ступень ракеты. А настоящего воздушно-космического аппарата с горизонтальным стартом нет до сих пор. Правда, в ФРГ с 70-х годов прошлого века разрабатывалась воздушно-космическая система, названная в честь пионера этой идеи «Зенгер». От проекта 40-х годов она отличается тем, что горизонтальный разгон осуществляет не катапульта, а специальный самолёт-разгонщик, на спине которого укреплён собственно космический самолёт, способный вывести на околоземную орбиту высотой до 300 км те же 10 т полезной нагрузки. Однако Эйгену Зенгеру в 1944 году и не снились те материалы, двигатели, методы навигации и управления, с которыми работают теперь учёные. В конце концов, видимо, он и сам понял фантастичность своей разработки. Он умер относительно недавно, в конце прошлого столетия, примирившись с мыслью, что так и не увидит самолёта, названного его именем.
ЕЩЁ О «ЛЕТАЮЩИХ ТАРЕЛКАХ». И, наконец, давайте вспомним ещё об одном загадочном проекте нацистов. Сразу после окончания Второй мировой войны пошли слухи, будто немцами были построены и испытаны какие-то «летающие диски» («Deutsche Fliigscheibe»). (Название «летающие тарелки» было придумано позднее.) Честно сказать, лично я отношусь к возможности создания «летающих тарелок» как таковых достаточно скептично. Летательные аппараты дисковой формы, использующие известные нам законы аэродинамики, как правило, получаются весьма неустойчивы в полёте. Так что данная форма может оказаться рациональной лишь при создании, скажем, «гравитолётов», до которых нам пока далеко. Тем не менее, когда в мои руки попали записки ныне уже покойного Василия Константинова (вынужденного эмигранта, бывшего военнопленного), я постарался их опубликовать. Тем более что они попали на родину не простым, а кружным путём, с помощью инженера Константина Тюца, встречавшегося с их автором во время одной из зарубежных командировок, в августе 1987 года, в Уругвае. В лагерь военнопленных Константинов попал не по своей воле. Во время отступления 1941 года под Киевом во время бомбёжки его тяжело контузило. Очнулся он уже в плену… Помыкался бывший солдат изрядно. Но один случай запомнился ему особенно. «В августе 1943 года часть заключённых, и я в том числе, была переброшена в Пенемюнде, в лагерь КЦ-А-4», — рассказывал Константинов. Здесь-то спустя месяц ему и довелось стать невольным свидетелем неких испытаний. Когда всех заключённых увели на обед, Василий был вынужден остаться, поскольку подвихнул ногу и не мог двигаться быстро. Сделал повязку и решил немного отлежаться в разбираемых завалах. Вот тут он и увидел, как на бетонную площадку возле одного из близстоящих ангаров четверо рабочих выкатили круглый, похожий на перевёрнутый вверх дном тазик, аппарат с прозрачной каплеобразной кабиной посередине. И на маленьких надувных колёсах. Затем по взмаху руки невысокого грузного человека странный тяжёлый аппарат, отливавший на солнце серебристым металлом и вздрагивавший при каждом порыве ветра, издал шипящий звук вроде шума паяльной лампы, оторвался от бетонной площадки и завис на высоте примерно пяти метров. Недолго покачавшись в воздухе — наподобие «ваньки-встаньки», — аппарат вдруг как бы преобразился: его контуры стали постепенно расплываться. Они как бы расфокусировались. «Затем аппарат резко, как юла, подпрыгнул и змейкой стал набирать высоту, — писал Константинов. — Полёт, судя по покачиванию, проходил неустойчиво. Внезапно налетел порыв ветра с Балтики, и странная конструкция, перевернувшись в воздухе, резко стала терять высоту. Меня обдало потоком гари, этилового спирта и горячего воздуха. Раздался удар, хруст ломающихся деталей — машина упала недалеко от меня. Инстинктивно я бросился к ней. Нужно спасти пилота — человек же! Но тело пилота уже безжизненно свисало из разбитой кабины, обломки обшивки, залитые горючим, постепенно окутывались голубоватыми струйками пламени. Резко обнажился ещё шипевший реактивный двигатель — в следующее мгновение всё было объято огнём…»
«МОДЕЛИ» ТАК И НЕ ВЗЛЕТЕЛИ. Что за странный аппарат видел заключённый концентрационного лагеря КЦ-А-4? До наших дней дошла информация почти о десятке технических проектов, которые можно классифицировать как проекты «летающих дисков». Первую попытку создания самолёта с круглым крылом предпринял ещё в 1909 году русский изобретатель Анатолий Георгиевич Уфимцев. Механик-самоучка, без специального образования, он построил четыре оригинальных авиационных двигателя и два самолёта под названием «Сфероплан». Однако ни одному из них не суждено было толком подняться в воздух. Все они оказались неустойчивы и разрушались при попытке взлететь. Тем не менее в первой половине XX века конструкторы США, Франции и некоторых других стран неоднократно обращались к дисковидной форме летательных аппаратов. Наиболее серьёзно, пожалуй, подошли к делу инженеры Третьего рейха. «Модель-1» («Колесо с крылом») дискообразного летательного аппарата была построена немецкими инженерами Шривером и Габермолем ещё в 1940 году, а испытана в феврале 1941 года близ Праги. Эта «тарелка» считается первым в мире летательным аппаратом вертикального взлёта. По конструкции она несколько напоминала лежащее велосипедное колесо: вокруг кабины вращалось широкое кольцо, роль «спиц» которого выполняли регулируемые лопасти. Их можно было устанавливать в необходимые позиции как для горизонтального, так и для вертикального полёта. В качестве силовой установки использовались как обычные поршневые двигатели, так и двигатели Вальтера. Эта машина создала своим конструкторам немало проблем. Ибо малейший дисбаланс вызывал значительную вибрацию, что часто служило причиной аварий. «Модель-2» («Вертикальный самолёт», или Фау-7) представляла собой усовершенствованный вариант предыдущей. Конструкторы увеличили её размеры, чтобы разместить двух пилотов, повысили мощность моторов, увеличили запасы топлива… Испытания Фау-7 состоялись 17 мая 1944 года. Скороподъёмность этого аппарата достигала 288 км/ч, скорость горизонтального полёта — 200 км/ч. Как только набиралась нужная высота, несущие лопасти изменяли свою позицию, и «диск» двигался подобно современным вертолётам, мало чем от них отличаясь. Другая модификация «Модели-2» — под названием «Дисколёт» — была собрана на заводе «Ческо Морава» и испытана 14 февраля 1945 года. На ней был установлен жидкостно-реактивный двигатель Вальтера, а главный ротор приводился во вращение с помощью сопел, расположенных на концах лопастей. Впрочем, и этим двум проектам было суждено остаться на уровне опытных образцов. «Диск Беллуццо», или «Модель-3», над которой работали три немецких конструктора — Беллуццо, Шривер и Мите, — была выпущена в двух вариантах: 38 и 68 м в диаметре. Двигательная установка аппарата состояла из 12 наклонных турбореактивных двигателей, расположенных по окружности. Вероятно, это были серийно производившиеся Jumo-004 или BMW-003. Они своими струями охлаждали главный двигатель и, отсасывая воздух, создавали выше аппарата область разрежения, что способствовало его подъёму с меньшим усилием. Главный секрет представлял основной двигатель аппарата, сконструированный австрийским изобретателем Виктором Шаубергером. В корпусе мотора размещался ротор, лопасти которого представляли собой спиралевидные стержни. Сверху крепились мотор-стартер и генератор для запуска двигателя. Рабочим телом служила вода. Стартер раскручивал ротор, который из смеси воды и воздуха формировал своего рода искусственный смерч. Шаубергер даже подчёркивал, что при определённых условиях смерч становился самоподдерживающимся, нужно было лишь подводить к вихрю тепло. Этот процесс Шаубергер называл «имплозией», или «антивзрывом». Когда двигатель выходил на самодостаточный режим, стартер отключался и в двигатель через воздухозаборники, расположенные под днищем, засасывался воздух. Смерч сжимал его и выбрасывал через центральное сопло, создавая тягу. Одновременно двигатель вращал вал электрогенератора, который использовался для питания системы управления и подзарядки батарей стартера. Говорят, 19 февраля 1945 года «Диск Беллуццо» совершил свой первый и последний экспериментальный полёт. За 3 минуты он достиг высоты 15 км и скорости 2200 км/ч при горизонтальном движении! Аппарат мог также зависать в воздухе, летать назад и вперёд почти без разворотов, а садился вертикально на выдвигавшиеся стойки шасси. Однако можно ли верить в реальность лётных характеристик такого аппарата? Задать такой вопрос заставляют вот какие сомнения. По свидетельству самого Шаубергера, уникальный аппарат, стоивший миллионы рейхсмарок, в конце войны был уничтожен, чтобы не достался советским войскам, стремительно наступавшим на Бреслау (ныне — Вроцлав). Сами же Шривер и Шаубергер ушли на Запад и сдались в конце концов американцам. Однако восстановить по их просьбе аппарат Шаубергер так и не смог. Сам он в одном из писем, написанном в августе 1958 года, объяснил этот факт следующим образом: «Модель, испытанная в феврале 1945 года, была построена в сотрудничестве с первоклассными инженерами-специалистами по взрывам из числа заключённых концлагеря Маутхаузен. Затем их увезли в лагерь, для них это был конец. Я уже после войны слышал, что идёт интенсивное развитие дискообразных летательных аппаратов, но, несмотря на прошедшее время и уйму захваченных в Германии документов, страны, ведущие разработки, не создали хотя бы что-то похожее на мою модель, которая была взорвана по приказу Кейтеля». То есть, говоря попросту, Шаубергер сознался, что не обладает всеми производственными секретами. А может, он попросту хитрил, набивая себе цену, зная, что на самом деле его создание вовсе не так хорошо, как о том говорят?.. Наконец, пару слов, наверное, стоит сказать о проекте «Хаунебу-2» («Haunebu-2»). Скорее всего, этот проект был из ряда перспективных предложений, подобных «бомбардировщику-антиподу» Зенгера, и существовал лишь на бумаге. Судя по описанию, он должен был представлять собой бронированный диск диаметром в 25,3 м с мощной силовой установкой неизвестной конструкции. Именно она обеспечивала полёт длительностью более двух с половиной суток при скорости в 6000 км/ч (?!). Экипаж этого «летающего чуда» должен был состоять из 9 человек. Кроме того, аппарат нёс вооружение, состоящее из шести корабельных 210-мм артиллерийских установок в трёх вращающихся башнях для обстрела нижней полусферы и 280-мм орудия в верхней башне. Иногда приходится слышать рассказы о том, что, дескать, несколько экземпляров именно этого «диска» гитлеровцы переправили на секретную базу, созданную в конце Второй мировой войны в Антарктиде. И там они с помощью этого суперсекретного оружия дали бой американскому флоту, намеревавшемуся захватить ту базу… Однако сколько-нибудь серьёзных подтверждений этой версии нет.
1 июня 1928 | Родился Добровольский Георгий Тимофеевич. Лётчик-космонавт СССР. Герой Сов. Союза. Совершил полёт на КК «Союз-11»-«Салют» (1971) совместно с В. Н. Волковым и В. И. Пацаевым. Погиб при спуске с орбиты из-за разгерметизации СА 30.06.1971.
1 июня 1950 | Родился Манаков Геннадий Михайлович. Лётчик-космонавт СССР. Герой Сов. Союза. Совершил два полёта на КК Союз ТМ-10»-«Мир» (1990) и «Союз ТМ-16»-«Мир»(1993).
1 июня 1957 | 1 июня 1957г. родился Колмыков Владимир Афанасьевич.Генеральный директор ОАО "Красноярский машиностроительный завод".Профессор, кандидат технических наук. Лауреат премии Правительства РФ в области науки и техники (2006 год). Заслуженный машиностроитель РФ (2008 год).
1 июня исполняется 50 лет (1967) со дня запуска в СССР (космодром Байконур) разведывательного спутника “Космос-162” (“Зенит-4”).
1 июня исполняется 35 лет (1982) со дня запуска в СССР (космодром Плесецк) военного спутника связи “Космос-1371” (“Стрела-2М”).
1 июня исполняется 35 лет (1982) со дня запуска в СССР (космодром Байконур) спутника радиолокационной разведки “Космос-1372” (УС-А).
1 июня исполняется 5 лет (2012) со дня запуска из акватории Тихого океана с морской стартовой платформы Odyssey телекоммуникационного спутника Intelsat-19.
А.Ж.
Это сообщение отредактировал Agleam - 01-06-2017 - 23:36
Agleam
Станислав Николаевич Славин Космическая битва империй. От Пенемюнде до Плесецка ГЛАВА 2. …И ТОГДА ПОЛЕТЕЛ СПУТНИК
Работая над очередными ракетными конструкциями, их создатели прекрасно понимали, что как только любимое детище поднимется на высоту выше 100 км и разовьёт скорость порядка 8 км/с, у него есть шанс стать искусственным спутником Земли. И весьма стремились первыми преодолеть этот барьер. Но задача оказалась не из лёгких…
В 1945 г. в Третий рейх устремились специалисты разных областей техники, стремясь разузнать побольше о достижениях своего бывшего противника, вывезти побольше трофеев с его территории для подробного изучения у себя дома. Были среди этих специалистов и наши ракетчики.
СОПЕРНИЦА «КАТЮШИ». Первые сведения о немецкой баллистической ракете Фау-2 советские военные специалисты получили ещё летом 1944 года, когда с территории Польши в нашу страну были доставлены отдельные части этих ракет. Кроме того, данные, полученные от англичан, испытавших на себе мощь ракетных обстрелов Третьего рейха, говорили о том, что нацистам удалось создать оружие, не имеющее аналогов. В самом деле, если лучшие военные образцы отечественных пороховых реактивных снарядов для систем залпового огня М-13ДД («катюша») имели дальность полёта 11,8 км, то ракета Фау-2 покрывала расстояние около 300 км. И при этом имела боевую головку не 13 кг, как снаряд «катюши», а 1000 кг.
скрытый текст
В общем, выходило, опыт немецких ракетчиков следовало срочно изучить и перенять. А потому в том же 1944 году уже известный нам по работе с ракетопланами В.Ф. Болховитинов сформировал в составе НИИ-1 группу «Ракета». В неё вошли Александр Березняк, Алексей Исаев, Василий Мишин, Николай Пилюгин, Борис Черток, Юрий Победоносцев, Михаил Тихонравов и некоторые другие будущие ракетные знаменитости СССР. Много лет спустя Исаев сравнивал свою тогдашнюю работу и деятельность коллег с трудами палеонтологов. Только те по костям восстанавливали облик доисторических животных, а советские конструкторы — устройство и характеристики секретного оружия Третьего рейха по кускам рваного железа, разбитым агрегатам и остаткам электронных устройств. При этом и Исаев, и Королёв, и многие другие советские специалисты были во многом вынуждены пересмотреть собственные взгляды. Получалось, что планы создания ракетопланов многоразового использования и полёты на Марс и другие планеты придётся пока отложить. Прежде надо было хотя бы сравняться с конструкторами Третьего рейха, а уж потом идти дальше. Осенью 1944 года Королёв и его коллеги собирались приступить к созданию неуправляемой баллистической ракеты Д-1 и более совершенной управляемой крылатой ракеты Д-2. При этом предполагалось, что Д-1 будет иметь стартовый вес 1100 кг (включая боеголовку в 200 кг) и дальность полёта 12–13 км. А Д-2 со стартовой массой 1200 кг сможет доставить аналогичную боеголовку на расстояние до 70 км. В связи с этим в письме заместителю наркома от 14 октября 1944 года Королёв предлагал «реорганизовать бюро реактивных установок завода № 16 (группа инженера С.П. Королёва) в Специальное бюро, создать необходимую экспериментальную и производственную базу». Однако вскоре выяснилось, что Королёв поспешил с обнародованием собственных планов. Окончание войны внесло свои коррективы. В августе 1945 года, после Потсдамской конференции, заместитель наркома вооружений Василий Рябиков сформировал Межведомственную техническую комиссию для изучения трофейной ракетной техники. Работы оказалось столько, что в марте 1946 года было даже решено образовать на территории ракетного центра Пенемюнде свою научную организацию — институт «Нордхаузен» под руководством генерала Льва Гайдукова. Его заместителем и главным инженером стал Сергей Королёв.
ПОЛИГОН КАПУСТИН ЯР. Параллельно 13 мая 1946 года было принято постановление ЦК ВКП(б) и Совета Министров СССР о развитии реактивной техники в стране. Кроме Министерства вооружений под руководством генерал-полковника Д.Ф. Устинова, которое было назначено головным по части ракетостроения, были созданы также главные управления по реактивной технике в ряде министерств, в Советской армии и в Военно-морском флоте. Далее, 16 мая 1946 года, уже приказом Дмитрия Устинова, на базе артиллерийского завода № 88, расположенного неподалёку от подмосковной станции Подлипки, был создан сверхсекретный Научно-исследовательский институт № 88 (НИИ-88). Это была первая в СССР организация по созданию серийной ракетной техники. Директором её стал Лев Гонор, до этого возглавлявший один из артиллерийских заводов, главным инженером — Юрий Победоносцев. А вернувшийся из Германии Сергей Королёв с августа 1946 года возглавил работы над отечественным аналогом Фау-2, который назвали просто — «изделие 1». Примерно за год коллектив возглавляемых им сотрудников шаг за шагом прошёл все этапы копирования ракеты — от изучения немецких чертежей, производственной документации и остатков чужих конструкций до воспроизводства всей конструкции в отечественных условиях и лётных испытаний. Специально для проведения испытаний был построен Государственный центральный полигон № 4 Министерства обороны. Место для него нашли в междуречье Волги и Ахтубы в 100 км юго-восточнее Сталинграда. От расположенного неподалёку населённого пункта он получил название Капустин Яр. Первая серия из десяти опытных ракет под индексом «изделие Т» была собрана на опытном заводе НИИ-88 в Подлипках. Потом ракеты доставили в Капустин Яр. И 18 октября 1947 года с полигона был осуществлён первый в нашей стране пуск баллистической ракеты дальнего действия. Ракета пролетела 206,7 км, поднялась на высоту 86 км, но отклонилась от цели на 30 км. Причём на месте падения ракеты не осталось даже воронки, поскольку «изделие Т» большей частью сгорело при входе в плотные слои атмосферы. Но ракетчики были довольны достигнутым — ракета всё-таки полетела. Однако при втором пуске, состоявшемся 20 октября, ракета отклонилась от цели на 180 км. Стали разбираться, в чём дело. И во время повторных испытаний системы управления на вибростенде обнаружили неисправность в электрической цепи, возникавшую почти сразу после старта. Недочёты исправили, и испытания были продолжены. Но всё равно из десятка ракет до цели долетела только половина, показав среднюю дальность полёта чуть более 270 км.
ПЕРВАЯ «ЕДИНИЦА». Пока бригада особого назначения резерва Верховного главнокомандования осуществляла пробные пуски, Королёв и его команда делали советский аналог Фау-2 — ракету Р-1. Разработкой жидкостного ракетного двигателя РД-100 для неё занималось Опытное конструкторское бюро № 456 (ОКБ-456) под руководством Валентина Глушко. Системы управления создавали коллективы Николая Пилюгина, Виктора Кузнецова и Михаила Рязанского. Проектирование и изготовление наземного комплекса средств обеспечения запуска ракеты было поручено Государственному союзному конструкторскому бюро специального машиностроения (ГСКБ «Спецмаш») под руководством Владимира Бармина. Так образовалась знаменитая шестёрка главных конструкторов, под чьим руководством долгие годы в СССР осуществлялись конструирование, изготовление и подготовка к запуску ракет как военного, так и гражданского назначения. «Единица» представляла собой одноступенчатую баллистическую ракету тактического назначения длиной 14,6 м с дальностью полёта 270 км, стартовой массой 13,4 т (из них около 1000 кг приходилось на боеголовку из обычной взрывчатки). Двигатель её работал на смеси этилового спирта и жидкого кислорода, а управлялась ракета в полёте автономной инерциальной системой. Работы по установке ракеты из транспортного в боевое положение, её заправка, проверка оборудования и т.п. занимали около 6 часов. При падении ракеты радиус разрушений составлял порядка 25 м, а среднее отклонение при полёте на максимальную дальность — 1500 м. В общем, говорить о практической эффективности нового оружия пока не приходилось. Тем не менее после ряда доработок и дополнительных испытаний в ноябре 1950 года баллистическая ракета Р-1 вместе с комплексом наземного оборудования была принята на вооружение. Правда, первое ракетное соединение, получившее название — 22-я особого назначения Гомельская ордена Ленина, Краснознамённая, орденов Суворова, Кутузова и Богдана Хмельницкого бригада РВГК, — базировалось на том же полигоне Капустин Яр в Астраханской области. (Кого ракетчики собирались оттуда атаковать при дальности полёта ракеты 300 км, так и осталось военной тайной.) Впрочем, позднее другие ракетные бригады заступили на боевое дежурство уже поближе к границам СССР. Их базы располагались неподалёку от городов Медведь Новгородской области, Камышин Волгоградской области, Белокоровичи на Украине, Шяуляй в Литве, Джамбул в Казахстане, Орджоникидзе в Северной Осетии, а также в районе села Раздольное Приморского края. Каждая бригада Р-1 состояла из трёх огневых дивизионов по две батареи с пусковыми установками ракет в каждом. Общее управление ракетными соединениями до марта 1955 года осуществлялось командующим артиллерией Советской армии Главным маршалом артиллерии Митрофаном Неделиным. Тем самым, что позднее вместе с большим числом своих подчинённых погиб во время несанкционированного пуска ракеты на Байконуре.
2 июня 1913 | Родился Богомолов Алексей Фёдорович. Гл. конструктор и директор ОКБ МЭИ (1953-1988). Ученый и конструктор радиотехнических систем РКТ предприятия. Д.т.н. Профессор. Действ, член АН СССР и РАН. Герой Соц. Труда. Лауреат Ленинской и Гос. премий.
2 июня 1913 | Родился Воскресенский Леонид Александрович. Специалист в области отработки РКТ. Зам. С. П. Королёва по лётно-конструкторским испытаниям (1947-1965). Д.т.н. Профессор. Герой Соц. Труда.
2 июня 1935 | Родился Хрущев Сергей Никитич. Зам. нач. КБ. Ведущий конструктор «НПО Машиностроения». Герой Соц. Труда.
2 июня 1940 | Родился Георгий Иванов. Космонавт-исследователь Народной республики Болгария. Герой НРБ. Совершил полёт на КК «Союз-33» (1979) совместно с Н. Н. Рукавишниковым
2 июня 1947 | Родилась Доброслова Лариса Прокофьевна. Зам. гл. конструктора ОАО Корпорация «Фазотрон-НИИР» по разработке бортовых средств отображения информации для служебного модуля МКС, а также КК «Союз» и «Прогресс».
2 июня 1955 | Основан Научно-исследовательский испытательный полигон № 5 (НИИП-5) - космодром «Байконур» (г. Ленинск). Директивой Генштаба МО утверждена организационно-штатная структура полигона.
2 июня 1983 | Запущена АМС «Венера-15» для исследования Венеры с орбиты ИСВ
2 июня 2003 | Запуск европейского космического аппарата «Марс-Экспресс» ракетой-носителем «Союз-ФГ» с разгонным блоком «Фрегат».
2 июня исполняется 85 лет (1932) со дня рождения советского и российского журналиста Ярослава Кирилловича Голованова. В середине 1960-х гг. был кандидатом на космический полет в качестве журналиста.
2 июня исполняется 55 лет (1962) со дня запуска в США (база ВВС США Ванденберг) фоторазведывательного спутника FTV 1127 (CORONA M-5) с камерой КН-4 и полетным заданием 9036.
2 июня исполняется 35 лет (1982) со дня запуска в СССР (космодром Байконур) разведывательного спутника "Космос-1373" ("Зенит-6У").